

CERTIFICATE OF ACCREDITATION

The ANSI National Accreditation Board

Hereby attests that

Martin Calibration, Inc. 11965 12th Avenue South

Burnsville, MN 55337 Including satellite locations located in: Mundelein, IL and Eau Claire, WI

Fulfills the requirements of

ISO/IEC 17025:2017

and national standard

ANSI/NCSL Z540-1-1994 (R2002)

In the fields of

CALIBRATION and **DIMENSIONAL MEASUREMENT**

This certificate is valid only when accompanied by a current scope of accreditation document. The current scope of accreditation can be verified at <u>www.anab.org</u>.

Jason Stine, Vice President Expiry Date: 06 July 2027 Certificate Number: ACT-1265

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2017

AND

ANSI/NCSL Z540-1-1994 (R2002)

Martin Calibration, Inc.

11965 12th Avenue South Burnsville, MN 55337

> Corey Garbers 952-882-1528

CALIBRATION AND DIMENSIONAL MEASUREMENT

ISO/IEC 17025 Accreditation Granted: 06 July 2025

Certificate Number: ACT-1265 Certificate Expiry Date: 06 July 2027

Satellite locations in:

Mundelein, IL

Eau Claire, WI

This Scope of Accreditation, version 018, was last updated on: 03 July 2025 and is valid only when accompanied by the Certificate.

Page 1 of 70

Services performed at Main Site laboratory

Martin Calibration, Inc.

11965 12th Avenue South Burnsville, MN 55337 Corey Garbers 952-882-1528

CALIBRATION

Acoustics and Vibration

Burnsville, MN

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Sound Level – Fixed Points	(94, 104 <mark>, 114) d</mark> B	0.2 dB	
Sound Level - Linearity	(50 to 143) dB	0.13 dB	Comparison to Bruel &
Sound Level - Frequency	(0.031 t <mark>o 16) kHz</mark>	1 % of reading	Kjaer Sound Pressure Calibrator
Sound Level - Distortion	(25 to 123) dB (0.031 to 16) kHz	0.14 dB	
Accelerometers	(5 to 9) Hz (10 to 99) Hz 100 Hz (101 to 920) Hz 921 Hz to 5 kHz (5 to 8) kHz (8 to 10) kHz (10 to 15) kHz	2.6 % of reading 1.6 % of reading 0.75 % of reading 1.3 % of reading 2.2 % of reading 3.8 % of reading 4.8 % of reading 8.6 % of reading	Comparison to PCB Shaker Table with PCB Reference Accelerometer

Chemical Quantities

Burnsville, M	N
Durnsvine, wi	

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Conductivity Meters ¹	(0.86 to 10) μS/cm (10 to 100) μS/cm (100 to 1 500) μS/cm 12 800 μS/cm	0.42 μS/cm 0.89 μS/cm 0.42 % of reading 0.42 % of reading	Comparison to Conductivity Standards

This Scope of Accreditation, version 018, was last updated on: 03 July 2025 and is valid only when accompanied by the Certificate.

Page 2 of 70

Chemical Quantities

Burnsville, MN

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Refractometers	0.00 Brix 10.00 Brix 40.00 Brix 70.00 Brix	0.000 6 Brix 0.018 Brix 0.019 Brix 0.03 Brix	Comparison to Calibration Solutions
pH Meters ¹	4 рН 7 рН 10 рН	0.016 рН 0.016 рН 0.016 рН	Comparison to Buffer Solutions

Electrical – DC/Low Frequency

Electrical – DC/Low Frequency			Burnsville, MN
Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
DC Voltage – Source ¹ Fixed Point	1 <mark>0</mark> V	0.5 μV/V	Comparison to 732B Voltage Standards with Fluke Maps
DC Voltage – Source 1	(0 to 220) mV (0.22 to 2.2) V (2.2 to 11) V (11 to 22) V (22 to 220) V (220 to 1 100) V	7.5 μ V/V + 0.4 μ V 5 μ V/V + 0.7 μ V 3.5 μ V/V + 2.5 μ V 3.5 μ V/V + 4 μ V 5 μ V/V + 40 μ V 6.5 μ V/V + 0.4 mV	Fluke 5730A Multiproduct Calibrator; Direct Measure
DC Voltage – Measure ¹	0V Up to 1 mV (1 to 10) mV (10 to 100) mV (100 mV to 1) V (1 to 10) V (10 to 100) V (100 to 1 100) V	$\begin{array}{c} 20 \text{ nV} \\ 100 \text{ nV} \\ 22 \mu \text{V/V} + 25 \text{ nV} \\ 5.3 \mu \text{V/V} \\ 0.5 \mu \text{V/V} \\ 0.31 \mu \text{V/V} \\ 0.35 \mu \text{V/V} \\ 1 \mu \text{V/V} \end{array}$	<i>Comparison to</i> Nano Voltmeter Fluke 732BVoltage Standard with MI Potentiometer/ Divider
DC High Voltage – Measure ¹	(1.1 to 10) kV (10 to 30) kV (30 to 50) kV (50 to 70) kV (70 to 100) kV	0.05 % of reading 0.055 % of reading 0.079 % of reading 0.12 % of reading 0.83 % of reading	Comparison to Hipotronics KVM100-A High Voltage Meter
DC Current – Source & Measure ¹	0 A (0 to 200) pA (0.2 to 20) nA (20 to 100) nA	76 fA 1.9 % of reading + 10 fA 0.29 % of reading + 1 pA 8 μA/A + 1.3 pA	Comparison to Electrometer

This Scope of Accreditation, version 018, was last updated on: 03 July 2025 and is valid only when accompanied by the Certificate.

Page 3 of 70

Burnsville, MN

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
DC Current – Source & Measure ¹	(0.1 to 1) μA (1 to 10) μA (10 to 100) μA (0.1 to 1) mA (1 to 10) mA (10 to 100) mA (0.1 to 1) A	30 μA/A 6.8 μA/A 6.2 μA/A 4.1 μA/A 4.2 μA/A 3.9 μA/A 17 μA/A	Comparison to Standard resistors and DMM and Multifunction Calibrator
DC Current – Measure ¹	(1 to 20) A (20 to 120) A	26 μΑ/Α 80 μΑ/Α + 4 mA	Comparison to Fluke 52120A Amplifier with shunts
DC Current – Source ¹	(0.2 to 220) μA (0.22 to 2.2) mA (2.2 to 22) mA (22 to 220) mA (0.22 to 2.2) A	$40 \ \mu A/A + 6 \ nA$ $35 \ \mu A/A + 7 \ nA$ $35 \ \mu A/A + 40 \ nA$ $45 \ \mu A/A + 0.7 \ \mu A$ $80 \ \mu A/A + 12 \ \mu A$	Fluke 5730A Multiproduct Calibrator; Direct Measure
DC Current – Source ¹	Up to 2 A (2.2 to 11) A (2 to 20) A	0.036 % of reading + 0.48 mA 0.012 % of reading + 0.16 mA 0.012 % of reading + 1.6 mA	Fluke 5730A Multiproduct Calibrator, Fluke 5725A Amplifier; Direct Measure
DC Current – Source ¹	(20 to 120) A	0.012 % of reading + 9.6 mA	Fluke 5730A Multiproduct Calibrator, Fluke 52120A Current Amplifier; Direct Measure
DC Current – Source ¹	(100 to 150) A (150 to 1 025) A	5 mA/A + 20 mA 5.1 mA/A + 0.9 A	Comparison to Fluke 5520A Multi Product Calibrator with 50-turn Coil
DC Power – Source	10.9 μW to 10.9 mW 10.9 mW to 3.06 kW (3.06 to 20.9) kW	0.18 mW/W 0.17 mW/W 0.54 mW/W	Comparison to Fluke 5520A Multi Product Calibrator
AC Power – Source (45 to 65) Hz	109 μW to 1.09 mW (1.09 to 297) μW 297 μW to 2.97 mW 2.97 mW to 337 W 337 W to 2.24 kW (2.24 to 20.9) kW	1.1 mW/W 930 μW/W 780 μW/W 620 μW/W 700 μW/W 780 μW/W	Comparison to Fluke 5520A Multi Product Calibrator

This Scope of Accreditation, version 018, was last updated on: 03 July 2025 and is valid only when accompanied by the Certificate.

Page 4 of 70

1899 L Street NW, Suite 1100-A, Washington, DC 20036 414-501-5494 www.anab.org

В

W

Burnsville, MN

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
AC Voltage – Source ¹	Up to 2.2 mV (10 to 20) Hz (20 to 40) Hz 40 Hz to 20 kHz (20 to 50) kHz (50 to 100) kHz (100 to 300) kHz (300 to 500) kHz 500 kHz to 1 MHz (2.2 to 22) mV (10 to 20) Hz (20 to 40) Hz 40 Hz to 20 kHz (20 to 50) kHz (50 to 100) kHz (300 to 500) kHz (300 to 500) kHz 500 kHz to 1 MHz (22 to 220) mV (10 to 20) Hz (20 to 40) Hz (20 to 40) Hz 40 Hz to 20 kHz (20 to 50) kHz (50 to 100) kHz (20 to 50) kHz (50 to 100) kHz (50 to 100) kHz (50 to 100) kHz (300 to 500) kHz (300 kHz to 1 MHz	0.024 % of reading + 4 μ V 0.009 % of reading + 4 μ V 0.008 % of reading + 4 μ V 0.02 % of reading + 4 μ V 0.05 % of reading + 5 μ V 0.11 % of reading + 10 μ V 0.14 % of reading + 20 μ V 0.27 % of reading + 20 μ V 0.024 % of reading + 4 μ V 0.009 % of reading + 4 μ V 0.008 % of reading + 4 μ V 0.02 % of reading + 4 μ V 0.05 % of reading + 4 μ V 0.11 % of reading + 5 μ V 0.11 % of reading + 20 μ V 0.27 % of reading + 20 μ V 0.27 % of reading + 20 μ V 0.024 % of reading + 20 μ V 0.005 7 % of reading + 7 μ V 0.005 7 % of reading + 7 μ V 0.012 % of reading + 7 μ V 0.031 % of reading + 20 μ V 0.14 % of reading + 20 μ V 0.031 % of reading + 20 μ V	Fluke 5730A Multiproduct Calibrator; Direct Measure

This Scope of Accreditation, version 018, was last updated on: 03 July 2025 and is valid only when accompanied by the Certificate.

Page 5 of 70

Burnsville, MN

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
AC Voltage – Source ¹	(0.22 to 2.2) V (10 to 20) Hz (20 to 40) Hz 40 Hz to 20 kHz (20 to 50) kHz (50 to 100) kHz (100 to 300) kHz (300 to 500) kHz 500 kHz to 1 MHz (2.2 to 22) V (10 to 20) Hz (20 to 40) Hz 40 Hz to 20 kHz (20 to 50) kHz (50 to 100) kHz (300 to 500) kHz (300 to 500) kHz (300 to 500) kHz 500 kHz to 1 MHz (22 to 220) V (10 to 20) Hz (20 to 40) Hz 40 Hz to 20 kHz (20 to 40) Hz 40 Hz to 20 kHz (20 to 50) kHz (50 to 100) kHz (50 to 100) kHz (50 to 100) kHz (300 to 500) kHz (20 to 250) V (15 to 50) Hz (250 to 1 100) V 50 Hz to 1 kHz	 0.024 % of reading + 40 μV 0.009 % of reading + 15 μV 0.004 2 % of reading + 8 μV 0.006 7 % of reading + 10 μV 0.008 5 % of reading + 30 μV 0.034 % of reading + 80 μV 0.1 % of reading + 0.2 mV 0.17 % of reading + 0.3 mV 0.024 % of reading + 0.4 mV 0.009 % of reading + 0.15 mV 0.004 2 % of reading + 0.15 mV 0.006 7 % of reading + 0.1 mV 0.006 7 % of reading + 0.2 mV 0.006 7 % of reading + 0.2 mV 0.006 7 % of reading + 0.2 mV 0.008 3 % of reading + 0.2 mV 0.034 % of reading + 2 mV 0.17 % of reading + 2 mV 0.17 % of reading + 1.5 mV 0.005 2 % of reading + 4 mV 0.009 % of reading + 1.5 mV 0.005 2 % of reading + 1.6 mV 0.015 % of reading + 16 mV 0.44 % of reading + 40 mV 0.8 % of reading + 16 mV 0.03 % of reading + 16 mV 0.007 % of reading + 3.5 mV 	Fluke 5730A Multiproduct Calibrator; Direct Measure
AC Voltage – Source ¹	(220 to 750) V (30 to 50) kHz (50 to 100) kHz (220 to 1 100) V 40 Hz to 1 kHz (1 to 20) kHz (20 to 30) kHz	0.06 % of reading + 11 mV 0.06 % of reading + 11 mV 0.009 % of reading + 4 mV 0.017 % of reading + 6 mV 0.23 % of reading + 45 mV	Fluke 5730A Multiproduct Calibrator, Fluke 5725A Amplifier; Direct Measure

This Scope of Accreditation, version 018, was last updated on: 03 July 2025 and is valid only when accompanied by the Certificate.

Page 6 of 70

1899 L Street NW, Suite 1100-A, Washington, DC 20036 414-501-5494 www.anab.org

`W

Burnsville, MN

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
AC Voltage – Source & Measure ¹	$\begin{array}{c} (0 \ {\rm to} \ 2.2) \ {\rm mV} \\ (10 \ {\rm to} \ 20) \ {\rm Hz} \\ (20 \ {\rm to} \ 40) \ {\rm Hz} \\ (0.04 \ {\rm to} \ 20) \ {\rm kHz} \\ (20 \ {\rm to} \ 50) \ {\rm kHz} \\ (50 \ {\rm to} \ 100) \ {\rm kHz} \\ (300 \ {\rm to} \ 500) \ {\rm kHz} \\ (300 \ {\rm to} \ 500) \ {\rm kHz} \\ (0.5 \ {\rm to} \ 1) \ {\rm MHz} \\ \hline (2.2 \ {\rm to} \ 7) \ {\rm mV} \\ (10 \ {\rm to} \ 20) \ {\rm Hz} \\ (20 \ {\rm to} \ 40) \ {\rm Hz} \\ (20 \ {\rm to} \ 40) \ {\rm Hz} \\ (20 \ {\rm to} \ 50) \ {\rm kHz} \\ (20 \ {\rm to} \ 50) \ {\rm kHz} \\ (20 \ {\rm to} \ 50) \ {\rm kHz} \\ (20 \ {\rm to} \ 500) \ {\rm kHz} \\ (100 \ {\rm to} \ 300) \ {\rm kHz} \\ (300 \ {\rm to} \ 500) \ {\rm kHz} \\ (0.5 \ {\rm to} \ 1) \ {\rm MHz} \\ \hline (7 \ {\rm to} \ 22) \ {\rm mV} \\ (10 \ {\rm to} \ 20) \ {\rm Hz} \\ (20 \ {\rm to} \ 50) \ {\rm kHz} \\ (20 \ {\rm to} \ 50) \ {\rm kHz} \\ (50 \ {\rm to} \ 100) \ {\rm kHz} \\ (100 \ {\rm to} \ 300) \ {\rm kHz} \\ (300 \ {\rm to} \ 500) \ {\rm kHz} \\ (300 \ {\rm to} \ 500) \ {\rm kHz} \\ (300 \ {\rm to} \ 500) \ {\rm kHz} \\ (0.5 \ {\rm to} \ 1) \ {\rm MHz} \\ \hline (22 \ {\rm to} \ 70) \ {\rm mV} \\ (10 \ {\rm to} \ 20) \ {\rm kHz} \\ (20 \ {\rm to} \ 500) \ {\rm kHz} \\ (0.5 \ {\rm to} \ 1) \ {\rm MHz} \\ \hline (20 \ {\rm to} \ 500) \ {\rm kHz} \\ (0.5 \ {\rm to} \ 1) \ {\rm MHz} \\ \hline (20 \ {\rm to} \ 500) \ {\rm kHz} \\ (0.04 \ {\rm to} \ 20) \ {\rm kHz} \\ (20 \ {\rm to} \ 500) \ {\rm kHz} \\ (0.04 \ {\rm to} \ 20) \ {\rm kHz} \\ (0.05 \ {\rm to} \ 1) \ {\rm MHz} \\ \hline (20 \ {\rm to} \ 500) \ {\rm kHz} \\ (20 \ {\rm to} \ 500) \ {\rm kHz} \\ (20 \ {\rm to} \ 500) \ {\rm kHz} \\ (20 \ {\rm to} \ 500) \ {\rm kHz} \\ (300 \ {\rm to} \ 500) \ {\rm kHz} \\ (300 \ {\rm to} \ 500) \ {\rm kHz} \\ (300 \ {\rm to} \ 500) \ {\rm kHz} \\ (300 \ {\rm to} \ 500) \ {\rm kHz} \\ (300 \ {\rm to} \ 500) \ {\rm kHz} \\ (300 \ {\rm to} \ 500) \ {\rm kHz} \\ (300 \ {\rm to} \ 500) \ {\rm kHz} \\ (300 \ {\rm to} \ 500) \ {\rm kHz} \\ (300 \ {\rm to} \ 500) \ {\rm kHz} \\ (0.5 \ {\rm to} \ 1) \ {\rm MHz} \ \ (0.5 \ {\rm to} \ 1) \ {\rm MHz} \ (0.5 \ {\rm to} \ 1) \ {\rm MHz} \ (0.5 \ {\rm to} \ 1) \ {\rm MHz} \ (0.5 \ {\rm to} \ 1) \ {\rm MHz} \ (0.5 \ {\rm to} \ 1) \ {\rm MHz} \ (0.5 \ {\rm to} \ 1) \ {\rm MHz} \ (0.5 \ {\rm to} \ 1) \ {\rm MHz} \ (0.5 \ {\rm to} \ 1) \ {\rm MHz} \ (0.5 \ {\rm to} \ 1) \ {\rm MHz} \ $	1.1 mV/V + 1.3 μ V 490 μ V/V + 1.3 μ V 280 μ V/V + 1.3 μ V 540 μ V/V + 2 μ V 800 μ V/V + 2.5 μ V 1.5 mV/V + 4 μ V 1.6 mV/V + 8 μ V 2.3 mV/V + 8 μ V 570 μ V/V + 1.3 μ V 250 μ V/V + 1.3 μ V 250 μ V/V + 2.5 μ V 400 μ V/V + 2.5 μ V 800 μ V/V + 4 μ V 870 μ V/V + 8 μ V 1.5 mV/V + 8 μ V 1.5 mV/V + 8 μ V 130 μ V/V + 1.3 μ V 130 μ V/V + 1.3 μ V 140 μ V/V + 2.5 μ V 210 μ V/V + 2.5 μ V 210 μ V/V + 4 μ V 590 μ V/V + 8 μ V 1.1 mV/V + 8 μ V 160 μ V/V + 1.5 μ V 87 μ V/V + 1.5 μ V 87 μ V/V + 2.5 μ V 340 μ V/V + 2.5 μ V 340 μ V/V + 4.5 μ V	Comparison to Fluke 5790A AC Standard w/ 5720A Multi Product Calibrator

This Scope of Accreditation, version 018, was last updated on: 03 July 2025 and is valid only when accompanied by the Certificate.

Page 7 of 70

1899 L Street NW, Suite 1100-A, Washington, DC 20036 414-501-5494 www.anab.org

В

W

Burnsville, MN

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
AC Voltage –	(70 to 220) mV (10 to 20) Hz (20 to 40) Hz (20 to 50) kHz (50 to 100) kHz (50 to 100) kHz (100 to 300) kHz (300 to 500) kHz (0.5 to 1) MHz (220 to 700) mV (10 to 20) Hz (20 to 40) Hz (20 to 40) Hz (20 to 50) kHz (50 to 100) kHz (100 to 300) kHz (300 to 500) kHz (0.5 to 1) MHz	$\begin{array}{c} 140 \ \mu \text{V/V} + 1.5 \ \mu \text{V} \\ 57 \ \mu \text{V/V} + 1.5 \ \mu \text{V} \\ 25 \ \mu \text{V/V} + 1.5 \ \mu \text{V} \\ 25 \ \mu \text{V/V} + 1.5 \ \mu \text{V} \\ 46 \ \mu \text{V/V} + 2 \ \mu \text{V} \\ 110 \ \mu \text{V/V} + 2.5 \ \mu \text{V} \\ 170 \ \mu \text{V/V} + 4 \ \mu \text{V} \\ 250 \ \mu \text{V/V} + 8 \ \mu \text{V} \\ 670 \ \mu \text{V/V} + 8 \ \mu \text{V} \\ 670 \ \mu \text{V/V} + 1.5 \ \mu \text{V} \\ 51 \ \mu \text{V/V} + 1.5 \ \mu \text{V} \\ 22 \ \mu \text{V/V} + 1.5 \ \mu \text{V} \\ 34 \ \mu \text{V/V} + 2 \ \mu \text{V} \\ 53 \ \mu \text{V/V} + 2.5 \ \mu \text{V} \\ 120 \ \mu \text{V/V} + 4 \ \mu \text{V} \\ 200 \ \mu \text{V/V} + 8 \ \mu \text{V} \\ 640 \ \mu \text{V/V} + 8 \ \mu \text{V} \end{array}$	Comparison to Fluke 5790A AC Standard w/
Source & Measure ¹	(0.7 to 2.2) V (10 to 20) Hz (20 to 40) Hz (0.04 to 20) kHz (20 to 50) kHz (50 to 100) kHz (100 to 300) kHz (300 to 500) kHz (0.5 to 1) MHz (2.2 to 7) V (10 to 20) Hz (20 to 40) Hz (20 to 40) Hz (20 to 50) kHz (50 to 100) kHz (100 to 300) kHz (300 to 500) kHz (0.5 to 1) MHz	$\begin{array}{c} 130 \ \mu \text{V/V} \\ 44 \ \mu \text{V/V} \\ 16 \ \mu \text{V/V} \\ 31 \ \mu \text{V/V} \\ 47 \ \mu \text{V/V} \\ 170 \ \mu \text{V/V} \\ 170 \ \mu \text{V/V} \\ 600 \ \mu \text{V/V} \\ 600 \ \mu \text{V/V} \\ 130 \ \mu \text{V/V} \\ 45 \ \mu \text{V/V} \\ 16 \ \mu \text{V/V} \\ 32 \ \mu \text{V/V} \\ 54 \ \mu \text{V/V} \\ 130 \ \mu \text{V/V} \\ 270 \ \mu \text{V/V} \\ 800 \ \mu \text{V/V} \end{array}$	5720A Multi Product Calibrator

This Scope of Accreditation, version 018, was last updated on: 03 July 2025 and is valid only when accompanied by the Certificate.

Page 8 of 70

1899 L Street NW, Suite 1100-A, Washington, DC 20036 414-501-5494 www.anab.org

W

Burnsville, MN

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
	(7 to 22) V		
	(10 to 20) Hz	<mark>130</mark> μV/V	
	(20 to 40) Hz	45 μV/V	
	(0.04 to 20) kHz	18 μV/V	
	(20 to 50) kHz	32 µV/V	
	(50 to 100) kHz	54 μV/V	
	(100 to 300) kHz	130 µV/V	
	(300 to 500) kHz	270 µV/V	
	(0.5 to 1) MHz	<mark>8</mark> 00 μV/V	
	(22 to 70) V		
	(10 to 20) Hz	130 µV/V	
	(20 to 40) Hz	45 μ V /V	
	(0.04 to 20) kHz	21 μV/V	
	(20 to 50) kHz	38 μV/V	
	(50 to 100) kHz	63 μV/V	Comparison to Fluke
AC Voltage – Source & Measure ¹	(100 to 300) kHz	130 µV/V	5790A AC Standard w/
Source & Measure	(300 to 500) kHz	270 μV/V	5720A Multi Product Calibrator
	(0.5 to 1) MHz (70 to 220) V	800 µV/V	Calibrator
	(10 to 20) Hz	130 μV/V	
	(20 to 40) Hz	$45 \mu \text{V/V}$	
	(0.04 to 20) kHz	$21 \mu V/V$	
	(20 to 50) kHz	46 μV/V	
	(50 to 100) kHz	65 μV/V	
	(100 to 300) kHz	140 µV/V	
	(300 to 500) kHz	330 µV/V	
	(220 to 700) V	·	
	(10 to 20) Hz	130 μV/V	
	(20 to 40) Hz	66 μV/V	
	(0.04 to 20) kHz	27 µV/V	
	(20 to 50) kHz	87 μV/V	
	(50 to 100) kHz	330 µV/V	

This Scope of Accreditation, version 018, was last updated on: 03 July 2025 and is valid only when accompanied by the Certificate.

Page 9 of 70

Burnsville, MN

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
AC Voltage – Source & Measure Flatness relative to 1 kHz	(0 to 2.2) mV (10 to 30) Hz (30 to 120) Hz (0.12 to 1.2) kHz (1.2 to 120) kHz (1.2 to 120) kHz (1.2 to 20) kHz (1.2 to 2) MHz (2 to 10) MHz (2 to 10) MHz (2 to 30) MHz (2 to 7) mV (10 to 30) Hz (30 to 120) Hz (0.12 to 1.2) kHz (1.2 to 120) kHz (1.2 to 120) kHz (1.2 to 2) MHz (1.2 to 2) MHz (2 to 10) MHz (2 to 10) MHz (2 to 10) MHz (2 to 30) MHz (30 to 120) Hz (0.12 to 1.2) kHz (1.2 to 2) MHz (2 to 10) MHz (10 to 20) MHz (30 to 120) Hz (0.12 to 1.2) kHz (1.2 to 2) mV (10 to 30) Hz (30 to 120) Hz (0.12 to 1.2) kHz (1.2 to 120) kHz (1.2 to 2) MHz (1.2 to 120) kHz (1.2 to 2) MHz (1.2 to 2) MHz (2 to 10) MHz (1.2 to 2) MHz (2 to 10) MHz (1.2 to 2) MHz (2 to 10) MHz (2 to 10) MHz (1.2 to 2) MHz (2 to 10) MHz (10 to 20) MHz (2 to 10) MHz	0.1 % of reading + 1.3 μ V 0.05 % of reading + 1.3 μ V 0.05 % of reading + 1.3 μ V 0.05 % of reading + 1 μ V 0.07 % of reading + 1 μ V 0.07 % of reading + 1 μ V 0.07 % of reading + 1 μ V 0.17 % of reading + 1 μ V 0.32 % of reading + 1 μ V 0.32 % of reading + 2 μ V 0.1 % of reading 0.05 % of reading 0.05 % of reading 0.05 % of reading 0.07 % of reading + 1 μ V 0.07 % of reading + 1 μ V 0.07 % of reading + 1 μ V 0.17 % of reading + 1 μ V + 0.17 % of reading + 1 μ V + 0.17 % of reading + 1 μ V + 0.17 % of reading + 1 μ V + 0.17 % of reading + 0.05 % of reading + 0.07 % of reading	Comparison to Fluke 5790A AC Standard w/ 5720A Multi Product Calibrator (Wideband)

This Scope of Accreditation, version 018, was last updated on: 03 July 2025 and is valid only when accompanied by the Certificate.

Page 10 of 70

1899 L Street NW, Suite 1100-A, Washington, DC 20036 414-501-5494 www.anab.org

Burnsville, MN

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
AC Voltage – Source & Measure Flatness relative to 1 kHz	(22 to 70) mV (10 to 30) Hz (30 to 120) Hz (0.12 to 1.2) kHz (1.2 to 120) kHz (1.2 to 120) kHz (1.2 to 120) kHz (1.2 to 2) MHz (2 to 10) MHz (2 to 10) MHz (2 to 10) MHz (2 to 30) MHz (2 to 30) MHz (30 to 120) Hz (0.12 to 1.2) kHz (1.2 to 120) kHz (1.2 to 120) kHz (1.2 to 120) kHz (1.2 to 2) MHz (2 to 10) MHz (2 to 10) MHz (2 to 10) MHz (2 to 10) MHz (30 to 120) Hz (2 to 30) MHz (2 to 10) MHz (2 to 10) MHz (10 to 30) Hz (30 to 120) Hz (0.12 to 1.2) kHz (1.2 to 120) kHz	Measurement (+/-) 0.1% of reading 0.05% of reading 0.1% of reading 0.15% of reading 0.04% of reading 0.04% of reading 0.04% of reading 0.05% of reading 0.05% of reading 0.15% of reading 0.15% of reading 0.15% of reading 0.15% of reading 0.35% of reading 0.3% of reading 0.3% of reading 0.3% of reading 0.3% of reading 0.03% of reading 0.03% of reading 0.05% of reading 0.1% of reading <th>,</th>	,
	(10 to 20) MHz (20 to 30) MHz	0.15 % of reading 0.35 % of reading	

This Scope of Accreditation, version 018, was last updated on: 03 July 2025 and is valid only when accompanied by the Certificate.

Page 11 of 70

1899 L Street NW, Suite 1100-A, Washington, DC 20036 414-501-5494 www.anab.org

Burnsville, MN

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
AC Voltage – Source & Measure Flatness relative to 1 kHz	(0.7 to 2.2) V (10 to 30) Hz (30 to 120) Hz (0.12 to 1.2) kHz (1.2 to 120) kHz (120 to 500) kHz (120 to 500) kHz (0.5 to 1.2) MHz (12 to 2) MHz (2 to 10) MHz (2 to 10) MHz (20 to 30) MHz (20 to 30) MHz (20 to 30) Hz (30 to 120) Hz (0.12 to 1.2) kHz (1.2 to 120) kHz (1.2 to 120) kHz (1.2 to 2) MHz (1.2 to 2) MHz	0.1 % of reading 0.03 % of reading 0.03 % of reading 0.03 % of reading 0.03 % of reading 0.05 % of reading 0.05 % of reading 0.15 % of reading 0.15 % of reading 0.35 % of reading 0.03 % of reading 0.05 % of reading 0.05 % of reading	Comparison to Fluke 5790A AC Standard w/ 5720A Multi Product Calibrator (Wideband)
	(1.2 to 2) MHz (2 to 10) MHz (10 to 20) MHz (20 to 30) MHz	0.05 % of reading 0.1 % of reading 0.15 % of reading 0.35 % of reading	
AC Current – Source ¹	Up to 220 μ A (10 to 20) Hz (20 to 40) Hz 40 Hz to 1 kHz (1 to 5) kHz (5 to 10) kHz (0.22 to 2.2) mA (10 to 20) Hz (20 to 40) Hz 40 Hz to 1 kHz (1 to 5) kHz (5 to 10) kHz (2.2 to 22) mA (10 to 20) Hz (20 to 40) Hz 40 Hz to 1 kHz (1 to 5) kHz (5 to 10) kHz (5 to 10) kHz	 0.025 % of reading + 16 nA 0.016 % of reading + 10 nA 0.011 % of reading + 8 nA 0.028 % of reading + 12 nA 0.11 % of reading + 65 nA 0.25 % of reading + 40 nA 0.016 % of reading + 35 nA 0.011 % of reading + 35 nA 0.02 % of reading + 0.11 µA 0.11 % of reading + 0.65 µA 0.025 % of reading + 0.35 µA 0.016 % of reading + 0.35 µA 0.020 % of reading + 0.55 µA 0.11 % of reading + 5 µA 	Fluke 5730A Multiproduct Calibrator; Direct Measure

This Scope of Accreditation, version 018, was last updated on: 03 July 2025 and is valid only when accompanied by the Certificate.

Page 12 of 70

1899 L Street NW, Suite 1100-A, Washington, DC 20036 414-501-5494 www.anab.org

'

Burnsville, MN

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
AC Current – Source ¹	(2.2 to 22) mA (10 to 20) Hz (20 to 40) Hz 40 Hz to 1 kHz (1 to 5) kHz (5 to 10) kHz (22 to 220) mA (10 to 20) Hz (20 to 40) Hz 40 Hz to 1 kHz (1 to 5) kHz	0.025 % of reading + 0.4 μA 0.016 % of reading + 0.35 μA 0.011 % of reading + 0.35 μA 0.02 % of reading + 0.55 μA 0.11 % of reading + 5 μA 0.025 % of reading + 4 μA 0.016 % of reading + 3.5 μA 0.011 % of reading + 2.5 μA	Fluke 5730A Multiproduct Calibrator, Fluke 5725A Amplifier; Direct Measure
AC Current – Source ¹	(1 to 3) kHz (5 to 10) kHz (0.22 to 2.2) A 20 Hz to 1 kHz (1 to 5) kHz (5 to 10) kHz (2.2 to 11) A (40 to 100) Hz (1 to 5) kHz (5 to 10) kHz	$\begin{array}{c} 0.02\ \% \text{ of reading} + 9.5\ \mu\text{A}\\ 0.11\ \% \text{ of reading} + 10\ \mu\text{A}\\ \hline 0.025\ \% \text{ of reading} + 35\ \mu\text{A}\\ 0.045\ \% \text{ of reading} + 80\ \mu\text{A}\\ 0.7\ \% \text{ of reading} + 0.16\ \mu\text{A}\\ \hline 0.046\ \% \text{ of reading} + 0.17\ \text{mA}\\ 0.095\ \% \text{ of reading} + 0.38\ \text{mA}\\ 0.36\ \% \text{ of reading} + 0.75\ \text{mA}\\ \end{array}$	Fluke 5730A Multiproduct Calibrator, Fluke 5725A Amplifier; Direct Measure
AC Current – Source ¹	Up to 2 A (10 to 850) Hz 850 Hz to 6 kHz (6 to 10) kHz (2 to 20) A (10 to 850) Hz 850 Hz to 6 kHz (6 to 10) kHz	 0.009 % of reading + 40 μA 0.04 % of reading + 80 μA 1.6 % of reading + 62 mA 0.009 % of reading + 0.4 mA 0.04 % of reading + 0.8 mA 2.3 % of reading + 94 mA 	Fluke 5730A Multiproduct Calibrator, Fluke 52120A Current Amplifier; Direct Measure
AC Current – Source ¹	(20 to 120) A (10 to 850) Hz 850 Hz to 6 kHz (6 to 10) kHz	0.009 % of reading + 2.4 mA 0.04 % of reading + 4.8 mA 3.1 % of reading + 0.7 A	Fluke 5730A Multiproduct Calibrator, Fluke 52120A Current Amplifier; Direct Measure
AC Current – Source ¹	9 μA to 1 mA DC to 10 kHz 1 mA to 1 A DC to 10 kHz (1 to 20) A DC to 10 kHz	75 μΑ/Α 28 μΑ/Α 52 μΑ/Α	Comparison to Fluke 5720A Multi Product Calibrator w/ A40B Shunts

This Scope of Accreditation, version 018, was last updated on: 03 July 2025 and is valid only when accompanied by the Certificate.

Page 13 of 70

1899 L Street NW, Suite 1100-A, Washington, DC 20036 414-501-5494 www.anab.org

'W

Burnsville, MN

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
	(20 to 120) A		Comparison to Fluke
AC Current – Source ¹	DC to 1 kHz	3 mA/A	5720A Multi Product
	(1 to 6) kHz	<u>12 m</u> A/A	Calibrator w/ A40B Shunts
	9 μA to 1 mA		
	(DC to 30) kHz	90 μA/A	
	(30 to 100) kHz	0.18 mA/A	
	1mA to 1A		Comparison to Fluke A40B
AC Current – Measure ¹	(DC to 100) kHz	35 μA/A	Shunts
	(1 to 20) A		Siluits
	(DC to 10) kHz	61 µA/A	
	(10 to 30) kHz	83 μA/A	
	(30 to 100) kHz	0.13 mA/A	
	9 μA to 200 μA		
	(1 to 10) Hz	0.62 mA/A	
	10 Hz t <mark>o 10 kHz</mark>	0.54 mA/A	
	(10 to <mark>30) kHz</mark>	0.94 mA/A	
	(30 to 100) kHz	8.4 mA/A	
	200 µA to 2 mA		
	(1 to 10) Hz	0.6 mA/A	
	10 Hz to 10 kHz	0.54 mA/A	
	(10 to 30) kHz	0.94 mA/A	Comparison to Fluke
AC Current – Measure ¹	(30 to 100) kHz	4.2 mA/A	8508A Multimeter
	(2 to 20) mA		0500A Multiliteter
	(1 to 10) Hz	0.6 mA/A	
	10 Hz to 10 kHz	0.54 mA/A	
	(10 to 30) kHz	0.94 mA/A	
	(30 to 100) kHz	4.2 mA/A	
	(20 to 200) mA		
	(1 to 10) Hz	0.57 mA/A	
	10 Hz to 10 kHz	0.49 mA/A	
	(10 to 30) kHz	0.83 mA/A	

This Scope of Accreditation, version 018, was last updated on: 03 July 2025 and is valid only when accompanied by the Certificate.

Page 14 of 70

Burnsville, MN

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
AC Current – Measure	(0.2 to 2) A 1 Hz to 2 kHz (2 to 10) kHz (10 to 30) kHz (2 to 20) A 10 Hz to 2 kHz (2 to 10) kHz (20 to 30) A 10 Hz to 2 kHz (2 to 10) kHz	0.3 mA/A + 0.1 mA 0.56 mA/A + 0.1 mA 0.8 mA/A + 0.1 mA 0.84 mA/A + 0.5 mA 0.86 mA/A + 0.5 mA 0.84 mA/A + 12 mA 1.2 mA/A + 12 mA	Fluke 8588A 8.5 Digit Multimeter; Direct Measure
Resistance – Source ¹	$\begin{array}{c} 0.001 \ \Omega \\ 0.01\Omega \\ 0.01\Omega \\ 0.1 \ \Omega \\ 1\Omega \\ 100 \ \Omega \\ 1 \ k\Omega \\ 100 \ \Omega \\ 1 \ k\Omega \\ 100 \ k\Omega \\ 100 \ k\Omega \\ 1 \ M\Omega \\ 100 \ M\Omega \\ 1 \ G\Omega \\ (1 \ to \ 10) \ G\Omega \\ (10 \ to \ 900) \ G\Omega \\ 1 \ T\Omega \\ 10 \ T\Omega \end{array}$	$\begin{array}{c} 3.5 \ \mu\Omega/\Omega \\ 4.3 \ \mu\Omega/\Omega \\ 1.5 \ \mu\Omega/\Omega \\ 0.67 \ \mu\Omega/\Omega \\ 0.56 \ \mu\Omega/\Omega \\ 0.56 \ \mu\Omega/\Omega \\ 0.51 \ \mu\Omega/\Omega \\ 0.51 \ \mu\Omega/\Omega \\ 0.57 \ \mu\Omega/\Omega \\ 1.3 \ \mu\Omega/\Omega \Omega \\ 14 \ \mu\Omega/\Omega \\ 130 \ \mu\Omega/\Omega \\ 26 \ \mu\Omega/\Omega \\ 0.16 \ \% \ of \ reading \\ 0.56 \ \% \ of \ reading \\ 0.56 \ \% \ of \ reading \\ 1.6 \ \% \ of \ reading \\ 1.7 \ \% \ of \ reading \\ 1.7 \ \% \ of \ reading \\ \end{array}$	Comparison to Standard resistors
Resistance – Measure ¹	$(10 \text{ to } 100) \mu\Omega$ $(0.1 \text{ to } 1) \text{ m}\Omega$ $(1 \text{ to } 10) \text{ m}\Omega$ $(1 \text{ to } 10) \text{ m}\Omega$ $(10 \text{ o } 100) \text{ m}\Omega$ $(0.1 \text{ to } 1) \Omega$ $(10 \text{ to } 100) \Omega$ $(0.1 \text{ to } 1) \text{ k}\Omega$ $(1 \text{ to } 10) \text{ k}\Omega$ $(10 \text{ o } 100) \text{ k}\Omega$ $(0.1 \text{ to } 1) \text{ M}\Omega$ $(1 \text{ to } 10) \text{ M}\Omega$	$\begin{array}{c} 0.15 \ \% \ \text{of reading} \\ \hline 0.15 \ \% \ \text{of reading} \\ 15 \ \mu\Omega/\Omega \\ \hline 5.1 \ \mu\Omega/\Omega \\ \hline 0.67 \ \mu\Omega/\Omega \\ \hline 0.66 \ \mu\Omega/\Omega \\ \hline 0.68 \ \mu\Omega/\Omega \\ \hline 0.51 \ \mu\Omega/\Omega \\ \hline 0.57 \ \mu\Omega/\Omega \\ \hline 1.3 \ \mu\Omega/\Omega \\ \hline 14 \ \mu\Omega/\Omega \end{array}$	Comparison to Standard resistors with bridge and DMM

This Scope of Accreditation, version 018, was last updated on: 03 July 2025 and is valid only when accompanied by the Certificate.

ilac-MRA

1899 L Street NW, Suite 1100-A, Washington, DC 20036 414-501-5494

www.anab.org

Burnsville, MN

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Resistance – Measure ¹	(10 to 200) MΩ (0.2 to 2) GΩ (2 to 20) GΩ	$72\mu\Omega/\Omega + 1k\Omega$ 0.18 m $\Omega/\Omega + 100$ k Ω 0.67 m $\Omega/\Omega + 10$ M Ω	Comparison to Decade resistors with bridge and DMM
Resistance – Measure ¹ High Voltage Mode up to 200 V	(2 to 20) MΩ (20 to 200) MΩ 200 MΩ to 2 GΩ (2 to 20) GΩ	15 μΩ/Ω + 10 Ω 60 μΩ/Ω + 1 kΩ 0.15 mΩ/Ω + 100 kΩ 0.53 mΩ/Ω + 10 MΩ	Comparison to Decade resistors with bridge and DMM
AC Resistance (Impedance)	$(1, 500) \text{ kHz}, 1 \text{ MHz} \\ 25 \Omega \\ 375 \Omega \\ (1, 250, 500) \text{ kHz}, 1 \text{ MHz} \\ 6 \text{ k}\Omega \\ (1, 25, 50) \text{ kHz} \\ 100 \text{ k}\Omega \\ \end{cases}$	100 μΩ/Ω	Comparison to AC Resistor Set
Capacitance – Measure ¹	1 pF @ 1 kHz 10 pF @ 1 kHz 100 pF @ 1 kHz 1 nF 1kHz 1 μF @ 1 kHz	1.9 mF/F 1.1 mF/F 1.2 mF/F 1.2 mF/F 1.2 mF/F	Comparison to QuadTech 1730 LCR Meter
Capacitance – Source ¹ (fixed values) @ 100 Hz @ 1 kHz	1 pF 1 nF 10 nF 100 nF 1 μF	1.8 mF/F 0.23 mF/F 0.25 mF/F 0.21 mF/F 0.25 mF/F	Comparison to Standard Capacitors
Capacitance – Source ¹ 10 Hz to 10 kHz 10 Hz to 3 kHz 10 Hz to 1 kHz 10 Hz to 1 kHz 10 Hz to 1 kHz (10 Hz to 1 kHz (10 to 600) Hz 10 Hz to 300 Hz 10 Hz to 150 Hz 10 Hz to 120 Hz	0.19 nF to 1.1 nF (1.1 to 3.3) nF (3.3 to 11) nF (11 to 110) nF (110 to 330) nF 330 nF to 1.1 μF (1.1 to 3.3) μF (3.3 to 11) μF (11 to 33) μF	15 mF/F 8.4 mF/F 3.6 mF/F 3.6 mF/F 3.7 mF/F 3.6 mF/F 3.6 mF/F 3.6 mF/F 5.1 mF/F	Comparison to Fluke 5520A Multi Product Calibrator

This Scope of Accreditation, version 018, was last updated on: 03 July 2025 and is valid only when accompanied by the Certificate.

Page 16 of 70

1899 L Street NW, Suite 1100-A, Washington, DC 20036 414-501-5494 www.anab.org

Burnsville, MN

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Capacitance – Source ¹ 10 Hz to 80 Hz (0 to 50) Hz (0 to 20) Hz (0 to 6) Hz (0 to 2) Hz (0 to 0.6) Hz (0 to 0.2) Hz	(33 to 110) μF (110 to 330) μF 330 μF to 1.1 mF (1.1 to 3.3) mF (3.3 to 11) mF (11 to 33) mF (33 to 110) mF	5.6 mF/F 5.6 mF/F 8.7 mF/F 5.5 mF/F 5.5 mF/F 8.5 mF/F 12 mF/F	Comparison to Fluke 5520A Multi Product Calibrator
Inductance – Measure ¹	100 μH @ 1 kHz 1 mH @ 1 kHz 10 mH @ 1 kHz 100 mH @ 1 kHz 100 mH @ 1 kHz 1 H @ 1 kHz	1.3 mH/H	Comparison to QuadTech 1730 LCR Meter
Inductance – Source ¹	500 μH @ 100 Hz 500 μH @ 1 kHz 2 mH @ 100 Hz 2 mH @ 100 Hz 20 mH @ 100 Hz 20 mH @ 1 kHz 1 H @ 100 Hz 1 H @ 1 kHz 10 H @ 100 Hz 10 H @ 1 kHz	1.2 mH/H 1 mH/H 1.1 mH/H 1 mH/H 1.1 mH/H 1 mH/H 1 mH/H 1 mH/H 1 mH/H 1 mH/H 1 mH/H	Comparison to Standard Inductors
Oscilloscopes ¹ Square Wave Signal 50 Ω at 1 kHz Square Wave Signal 1 MΩ at 1 kHz	40 μV to 5 V 40 μV to 5 V	1 mV/V 1 mV/V	
DC Voltage, 50 Ω DC Voltage, 1 MΩ Leveled Sine Wave Amplitude	1 mV to 5 V 1 mV to 200 V 5 mV to 5 V	0.26 mV/V 0.25 mV/V 15 mV/V	Comparison to Fluke 9500B/3200/9530 Oscilloscope Calibrator
Leveled Sine Wave Flatness (relative to 50 kHz)	4.4 mVpp to 5.6 Vpp 0.1 Hz to 300 MHz (300 to 550) MHz	43 mV/V 43 mV/V	

This Scope of Accreditation, version 018, was last updated on: 03 July 2025 and is valid only when accompanied by the Certificate.

Page 17 of 70

1899 L Street NW, Suite 1100-A, Washington, DC 20036 414-501-5494 www.anab.org

Burnsville, MN

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Oscilloscopes ¹ Leveled Sine Wave Flatness (relative to 50 kHz)	4.4 mVpp to 3.3 Vpp 550 MHz to 1.1 GHz (1.1 to 3.2) GHz	52 mV/V 52 mV/V	Comparison to Fluke
Time Marker 50 Ω Source and Period	9 ns to 55 s	0.25 μs/s	9500B/3200/9530 Oscilloscope Calibrator
Rise/Fall Time - Source	150 ps	27 ps	
Pulse Width - Source	(1 to 100) ns	52 ms/s	
Electrical Simulation of Thermocouple Indicators ¹	Type B (250 to 350) °C (350 to 445) °C (445 to 580) °C (580 to 750) °C (750 to 1 000) °C (1 000 to 1 820) °C Type C (0 to 250) °C (250 to 1 000) °C (1 000 to 1 500) °C (1 500 to 1 800) °C (1 800 to 2 000) °C (2 000 to 2 250) °C (2 250 to 2 315) °C Type E (-270 to -245) °C (-245 to -195) °C (-155 to -90) °C (-155 to -90) °C (15 to 890) °C (890 to 1 000) °C	$ \begin{array}{c} 1.1 \ ^{\circ}\text{C} \\ 0.85 \ ^{\circ}\text{C} \\ 0.67 \ ^{\circ}\text{C} \\ 0.52^{\circ} \ \text{C} \\ 0.43 \ ^{\circ}\text{C} \\ 0.33^{\circ} \ \text{C} \\ \end{array} $ $ \begin{array}{c} 0.23 \ ^{\circ}\text{C} \\ 0.18 \ ^{\circ}\text{C} \\ 0.21 \ ^{\circ}\text{C} \\ 0.24 \ ^{\circ}\text{C} \\ 0.27 \ ^{\circ}\text{C} \\ 0.33 \ ^{\circ}\text{C} \\ 0.37 \ ^{\circ}\text{C} \\ \end{array} $ $ \begin{array}{c} 1.38 \ ^{\circ}\text{C} \\ 0.21 \ ^{\circ}\text{C} \\ 0.37 \ ^{\circ}\text{C} \\ 1.38 \ ^{\circ}\text{C} \\ 0.21 \ ^{\circ}\text{C} \\ 0.12 \ ^{\circ}\text{C} \\ 0.12 \ ^{\circ}\text{C} \\ 0.09 \ ^{\circ}\text{C} \\ 0.08 \ ^{\circ}\text{C} \\ 0.08 \ ^{\circ}\text{C} \\ 0.08 \ ^{\circ}\text{C} \\ 0.08 \ ^{\circ}\text{C} \\ \end{array} $	Comparison to Ectron 1140A Thermocouple Simulator

This Scope of Accreditation, version 018, was last updated on: 03 July 2025 and is valid only when accompanied by the Certificate.

Page 18 of 70

1899 L Street NW, Suite 1100-A, Washington, DC 20036 414-501-5494 <u>www.anab.org</u>

AN

ANSI National Accreditation Board

Burnsville, MN

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Electrical Simulation of Thermocouple Indicators ¹	Type J (-210 to -180) °C (-180 to -120) °C (-120 to -50) °C (-50 to 990) °C (990 to 1 200) °C Type K (-270 to -255) °C (-255 to -195) °C (-195 to -115) °C (-115 to -55) °C (-55 to 1 000) °C (1 000 to 1 372) °C Type N (-270 to -260) °C (-260 to -200) °C (-260 to -200) °C (-200 to -140) °C (-140 to -70) °C (-70 to 25) °C (25 to 160) °C (160 to 1 300) °C Type R (-50 to -30) °C (-30 to 45) °C (45 to 160) °C (160 to 380) °C (380 to 775) °C (775 to 1 768) °C Type S (-50 to -30) °C (-45 to -105) °C (-105 to 310) °C (-105 to 310) °C (310 to 615) °C (615 to 1 768) °C	$\begin{array}{c} 0.14 \ ^{\circ}\text{C} \\ 0.12 \ ^{\circ}\text{C} \\ 0.09 \ ^{\circ}\text{C} \\ 0.08 \ ^{\circ}\text{C} \\ 0.08 \ ^{\circ}\text{C} \\ 0.14 \ ^{\circ}\text{C} \\ 0.14 \ ^{\circ}\text{C} \\ 0.14 \ ^{\circ}\text{C} \\ 0.09 \ ^{\circ}\text{C} \\ 0.09 \ ^{\circ}\text{C} \\ 0.09 \ ^{\circ}\text{C} \\ 0.27 \ ^{\circ}\text{C} \\ 0.17 \ ^{\circ}\text{C} \\ 0.12 \ ^{\circ}\text{C} \\ 0.13 \ ^{\circ}\text{C} \\ 0.25 \ ^{\circ}\text{C} \\ 0.35 \ ^{\circ}\text{C} \\ 0.25 \ ^{\circ}\text{C} \\ 0.38 \ ^{\circ}\text{C} \\ 0.38 \ ^{\circ}\text{C} \\ 0.33 \ ^{\circ}\text{C} \\ 0.34 $	Comparison to Ectron 1140A Thermocouple Simulator

This Scope of Accreditation, version 018, was last updated on: 03 July 2025 and is valid only when accompanied by the Certificate.

Page 19 of 70

1899 L Street NW, Suite 1100-A, Washington, DC 20036 414-501-5494 www.anab.org

<u>۱</u>

Burnsville, MN

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Electrical Simulation of Thermocouple Indicators ¹	Type T (-270 to -255) °C (-255 to -240) °C (-240 to -210) °C (-210 to -150) °C (-150 to -40) °C (-40 to 100) °C (100 to 400) °C	2.1 °C 0.56 °C 0.35 °C 0.21 °C 0.14 °C 0.09 °C 0.08 °C	Comparison to Ectron 1140A Thermocouple Simulator
Electrical Simulation of RTD Indicators ¹	PT 395 100 Ω (-200 to 0) °C (0 to 100) °C (100 to 300) °C (300 to 400) °C (400 to 630) °C (630 to 800) °C PT 3926 100 Ω (-200 to 0) °C (0 to 100) °C (100 to 300) °C (300 to 400) °C (400 to 630) °C PT 3916 100 Ω (-200 to -190) °C (-190 to -80) °C (-190 to -80) °C (0 to 100) °C (0 to 100) °C (100 to 260) °C (260 to 300) °C (400 to 630) °C PT 385 200 Ω (-200 to 100) °C (100 to 260) °C (260 to 300) °C (100 to 260) °C (260 to 300) °C (100 to 260) °C (260 to 300) °C (300 to 400) °C (100 to 260) °C (260 to 300) °C (300 to 400) °C (300 to 400) °C (400 to 600) °C	$\begin{array}{c} 0.06 \ ^{\circ}\text{C} \\ 0.08 \ ^{\circ}\text{C} \\ 0.11 \ ^{\circ}\text{C} \\ 0.12 \ ^{\circ}\text{C} \\ 0.14 \ ^{\circ}\text{C} \\ 0.27 \ ^{\circ}\text{C} \\ \end{array}$ $\begin{array}{c} 0.06 \ ^{\circ}\text{C} \\ 0.08 \ ^{\circ}\text{C} \\ 0.11 \ ^{\circ}\text{C} \\ 0.12 \ ^{\circ}\text{C} \\ 0.12 \ ^{\circ}\text{C} \\ 0.14 \ ^{\circ}\text{C} \\ \end{array}$ $\begin{array}{c} 0.29 \ ^{\circ}\text{C} \\ 0.05 \ ^{\circ}\text{C} \\ 0.07 \ ^{\circ}\text{C} \\ 0.08 \ ^{\circ}\text{C} \\ 0.07 \ ^{\circ}\text{C} \\ 0.08 \ ^{\circ}\text{C} \\ 0.09 \ ^{\circ}\text{C} \\ 0.11 \ ^{\circ}\text{C} \\ 0.12 \ ^{\circ}\text{C} \\ 0.12 \ ^{\circ}\text{C} \\ 0.27 \ ^{\circ}\text{C} \\ 0.27 \ ^{\circ}\text{C} \\ 0.05 \ ^{\circ}\text{C} \\ 0.05 \ ^{\circ}\text{C} \\ 0.15 \ ^{\circ}\text{C} \\ 0.15 \ ^{\circ}\text{C} \\ 0.16 \ ^{\circ}\text{C} \\ 0.19 \ ^{\circ}\text{C} \\ \end{array}$	Comparison to Fluke 5520A Multi Product Calibrator

This Scope of Accreditation, version 018, was last updated on: 03 July 2025 and is valid only when accompanied by the Certificate.

ilac-MRA

ANSI National Accreditation Board

В

Burnsville, MN

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Parameter/Equipment	Range PT 385 500 Ω $(-200 \text{ to } -80) ^{\circ}\text{C}$ $(-80 \text{ to } 100) ^{\circ}\text{C}$ $(100 \text{ to } 260) ^{\circ}\text{C}$ $(260 \text{ to } 400) ^{\circ}\text{C}$ $(400 \text{ to } 600) ^{\circ}\text{C}$ $(400 \text{ to } 630) ^{\circ}\text{C}$ $(600 \text{ to } 630) ^{\circ}\text{C}$ $(0 \text{ to } 100) ^{\circ}\text{C}$ $(100 \text{ to } 300) ^{\circ}\text{C}$ $(100 \text{ to } 300) ^{\circ}\text{C}$ $(100 \text{ to } 300) ^{\circ}\text{C}$ $(400 \text{ to } 630) ^{\circ}\text{C}$ $(630 \text{ to } 800) ^{\circ}\text{C}$ $(100 \text{ to } 300) ^{\circ}\text{C}$ $(0 \text{ to } 100) ^{\circ}\text{C}$ $(100 \text{ to } 300) ^{\circ}\text{C}$ $(100 \text{ to } 300) ^{\circ}\text{C}$ $(0 \text{ to } 100) ^{\circ}\text{C}$ $(100 \text{ to } 300) ^{\circ}\text{C}$ $(100 \text{ to } 300) ^{\circ}\text{C}$ $(100 \text{ to } -190) ^{\circ}\text{C}$ $(-200 \text{ to } -190) ^{\circ}\text{C}$ $(-190 \text{ to } -80) ^{\circ}\text{C}$ $(-190 \text{ to } -80) ^{\circ}\text{C}$ $(0 \text{ to } 100) ^{\circ}\text{C}$ $(100 \text{ to } 260) ^{\circ}\text{C}$ $(0 \text{ to } 100) ^{\circ}\text{C}$ $(0 \text{ to } 100) ^{\circ}\text{C}$ $(0 \text{ to } 00) ^{\circ}\text{C}$ $(0 \text{ to } 630) ^{\circ}C$		Method, and/or
	(100 to 260) °C (260 to 300) °C (300 to 400) °C (400 to 600) °C (600 to 630) °C	0.06 °C 0.14 °C 0.15 °C 0.16 °C 0.19 °C	

This Scope of Accreditation, version 018, was last updated on: 03 July 2025 and is valid only when accompanied by the Certificate.

Page 21 of 70

1899 L Street NW, Suite 1100-A, Washington, DC 20036 414-501-5494 www.anab.org

'W

Burnsville, MN

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Electrical Simulation of RTD Indicators ¹	PT 385 500 Ω (-200 to -80) °C (-80 to 100) °C (100 to 260) °C (260 to 400) °C (400 to 600) °C (600 to 630) °C PT 385 1 000 Ω (-200 to 0) °C (0 to 100) °C (100 to 260) °C (300 to 600) °C (600 to 630) °C (600 to 630) °C PtNi 120 Ω (-80 to 100) °C (100 to 260) °C Cu 427 10 Ω (-100 to 260) °C	0.05 °C 0.06 °C 0.07 °C 0.09 °C 0.01 °C 0.13 °C 0.04 °C 0.05 °C 0.06 °C 0.07 °C 0.08 °C 0.27 °C 0.09 °C 0.16 °C 0.35 °C	Comparison to Fluke 5520A Multi Product Calibrator

Electrical – RF/Microwave

Burnsville, MN

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
RF Power - Measure Absolute Level ¹	(-36 to 20) dBm 9 kHz to 6 GHz (20 to 30) dBm (6 to 18) GHz (18 to 26.5) GHz	0.16 dB 0.44 dB 0.5 dB	Comparison to Agilent E9304A/N1912A Agilent N5531S Measuring Receiver with N5532A Sensor Module
RF Power - Measure Absolute Level ¹	(-20 to 20) dBm 100 kHz to 30 MHz 30 MHz to 2 GHz (1 to 18) GHz (18 to 26.5) GHz	0.2 dB 0.21 dB 0.31 dB 0.4 dB	Comparison to Agilent N5531S Measuring Receiver with N5532A Sensor Module
RF Power - Measure Absolute Level ¹	(-30 to 20) dBm 100 kHz to 30 MHz	3.1 % of reading	Comparison to Agilent N5531S Measuring Receiver with 8482A Sensor

This Scope of Accreditation, version 018, was last updated on: 03 July 2025 and is valid only when accompanied by the Certificate.

Burnsville, MN

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
	(-10 to 0) dB	0.02 dB	
	(-20 to -10) dB	0.03 dB	
	(-30 to -20) dB	0.03 dB	Comparison to Agilent
Relative Power – Measure ¹	(-40 to -30) dB	0.05 dB	N5531S Measuring
100 kHz to 26.5 GHz	(-50 to -40) dB	0.06 dB	Receiver with N5532A
	(-60 to -50) dB	0.06 dB	Sensor Module
	(-70 to -60) dB	0.07 dB	
	(-80 to -70) dB	0.07 dB	
	(-90 to -80) dB	0.08 dB	
	(-100 to -90) dB	0.08 dB	Comparison to Agilent
Relative Power – Measure ¹	(-110 to -100) dB	0.09 dB	N5531S Measuring
100 kHz to 26.5 GHz	(-120 to -110) dB	0.1 dB	Receiver with N5532A
	(-130 to -120) dB	0.1 dB	Sensor Module
	(-140 to -130) dB	0.1 dB	
	(-90 to -75) dBm		
	250 kHz to 2 GHz	0.73 dB	
	(2 to 20 <mark>) GHz</mark>	1 dB	
	(20 to 32) GHz	1.2 dB	
	(-75 to -10) dBm		
RF Power – Source ¹	250 kHz to 2 GHz	0.72 dB	Comparison to Agilent
KF Fower – Source	(2 to 20) GHz	1 dB	N5183A Signal Generator
	(20 to 32) GHz	1.2 dB	
	(-20 to -10) dBm		
	250 kHz to 2 GHz	1.4 dB	
	(2 to 20) GHz	1.3 dB	
	(20 to 32) GHz	1.3 dB	
	(-10 to 10) dBm		
	250 kHz to 2 GHz	0.61 dB	
	(2 to 20) GHz	0.91 dB	
RF Power – Source ¹	(20 to 32) GHz	0.93 dB	Comparison to Agilent
Ki i owei – Source	> 10 dBm		N5183A Signal Generator
	250 kHz to 2 GHz	0.63 dB	
	(2 to 20) GHz	0.92 dB	
	(20 to 32) GHz	1 dB	
Phase Modulation	Rate: DC to 1 MHz		Comparison to Agilent
- Source ¹	DC to 4 MHz	0.59 % of reading + 0.01 rad	N5183A Signal Generator
100 kHz to 32 GHz			The room organic Concrutor

This Scope of Accreditation, version 018, was last updated on: 03 July 2025 and is valid only when accompanied by the Certificate.

Page 23 of 70

1899 L Street NW, Suite 1100-A, Washington, DC 20036 414-501-5494 www.anab.org

'

Burnsville, MN

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
LO Phase Noise @ 1GHz	(-50 to 20) dB Frequency offset: (0.10 to 1 000) Hz (1 to 9 900) kHz	0.48 dB 0.64 dB	Comparison to Keysight E4440A Spectrum Analyzer
Amplitude Modulation ¹ - Source 100 kHz to 32 GHz	Rate: DC to 10 kHz Depths: (1 to 90) %	4.1 % of reading	Comparison to Agilent N5183A Signal Generator
Amplitude Modulation - Measure ¹			
100 kHz to 10 MHz	Rate: 20 Hz to 10 kHz Depths: (5 to 99) %	0.83 % of reading	
10 MHz to 3 GHz	Rate: 50 Hz to 100 kHz Depths: (20 to 99) %	0.59 % of reading	Comparison to Agilent N5531S Measuring
10 MHz to 3 GHz	Rate: 50 Hz to 100 kHz Depths: (5 to 20) %	2.6 % of reading	Receiver with N5532A Sensor Modules
(3 to 26.5) GHz	Rate: 50 Hz to 100 kHz Depths: (20 to 99) % Rate: 50 Hz to 100 kHz	1.6 % of reading	
(3 to 26.5) GHz	Depths: (5 to 20) %	4.7 % of reading	
Pulse Generation – Source ¹ Repetition Frequency: 0.10 Hz to 10.0 MHz	30 ns to 42 s	10 ns	Agilent N5183A Signal Comparison to Generator
Frequency Modulation ¹ - Source 100 kHz to 32 GHz	1 dB Rate: DC to 3 MHz 3 dB Rate: DC to 7 MHz	2 % of setting + 20 Hz	Comparison to Agilent N5183A Signal Generator

This Scope of Accreditation, version 018, was last updated on: 03 July 2025 and is valid only when accompanied by the Certificate.

Page 24 of 70

Burnsville, MN

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Phase Modulation-Measure ¹ 100 kHz to 6.6 GHz	Rate: 200 Hz 20 kHz Dev.: > 0.7 rad	1.1 % of reading	
100 kHz to 6.6 GHz	Rate:200 Hz, 20 kHz Dev.>0.3 rad	3.1 % of reading	
(6.6 to 13.2) GHz	Rate: 200 Hz 20 kHz Dev.: > 2.0 rad	1.1 % of reading	Comparison to Agilent N5531S Measuring Receiver with N5532A
(6.6 to 13.2) GHz	Rate: 200 Hz 20 kHz Dev.: > 0.6 rad	3.1 % of reading	Sensor Modules
(13.2 to 26.5) GHz	Rate: 200 Hz 20 kHz Dev.: > 2.0 rad	1.1 % of reading	
(13.2 to 26.5) GHz	Rate: 200 Hz 20 kHz Dev.: > 0.6 rad	3.1 % of reading	
Freq Modulation-Measure ¹ Freq. Dev. Mod Rate Ratio >0.2			
250 kHz to 10 MHz	Rate: 20 Hz to 10 kHz Dev.: 200 Hz to 40 kHz peak	1.6 % of reading	
	Freq. Dev. Mod Rate Ratio >0.2		Comparison to Agilent
250 kHz to 10 MHz	Rate: 20 Hz to 10 kHz Dev.: 200 Hz to 40 kHz peak Freq. Dev. Mod Rate Ratio >1.2	1.1 % of reading	N5531SMeasuring Receiver with N5532A Sensor Modules
10 MHz to 6.6 GHz	Rate: 50 Hz to 200kHz Dev.: 250 Hz to 400 kHz peak Freq. Dev. Mod Rate Ratio >0.2	1.6 % of reading	

This Scope of Accreditation, version 018, was last updated on: 03 July 2025 and is valid only when accompanied by the Certificate.

Page 25 of 70

1899 L Street NW, Suite 1100-A, Washington, DC 20036 414-501-5494 www.anab.org

Burnsville, MN

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Freq Modulation-Measure ¹ Freq. Dev. Mod Rate Ratio >0.2 10 MHz to 6.6 GHz	Rate: 50 Hz to 200kHz Dev.: 250 Hz to 400 kHz peak	1.1 % of reading	
	Freq. Dev. Mod Rate Ratio >0.45 Rate: 50 Hz to 200kHz Dev.: 250 Hz to 400 kHz	111 /0 of roading	
(6.6 to 13.2) GHz	peak Freq. Dev. Mod Rate Ratio >0.2 Rate: 50 Hz to 200kHz	2.6 % of reading	Comparison to Agilent N5531SMeasuring
(6.6 to 13.2) GHz	Dev.: 250 Hz to 400 kHz peak Freq. Dev. Mod Rate Ratio >8	1.1 % of reading	Receiver with N5532A Sensor Modules
(13.2 to 26.5) GHz	Rate: 50 Hz to 200kHz Dev.: 250 Hz to 400 kHz peak Freq. Dev. Mod Rate Ratio >0.2	3.9 % of reading	
(13.2 to 26.5) GHz	Rate: 50 Hz to 200kHz Dev.: 250 Hz to 400 kHz peak	1.1 % of reading	

Length – Dimensional Metrology

Burnsville, MN

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Angle	(0.25 to 365)°	2.4 arc sec	Comparison to Gage Blocks, Gage Amplifier, Sine Bar

This Scope of Accreditation, version 018, was last updated on: 03 July 2025 and is valid only when accompanied by the Certificate.

Page 26 of 70

1899 L Street NW, Suite 1100-A, Washington, DC 20036 414-501-5494 www.anab.org

Burnsville, MN

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Angle Plates – Squareness ²	Up to 18 in	0.32 m° (5.6 μin/ in)	Comparison to Gage Amplifier with probe, Master Square(s)
	(0.01 to 1) in (2 to 3) in 4 in	$(1.1 + 0.4L) \mu in$ $(1.2 + 0.7L) \mu in$ $4.6 \mu in$	Comparison to Gage Blocks Gage Block Comparator
Gage Blocks ²	(5 to 20) in	(0.96 + 1.2 <i>L</i>) µin	Comparison to Horizontal Measuring Machine
	100 mm (125 to 500) mm	0.17 μm (0.06 + 0.000 6L) μm	Comparison to Comparison to Primary Master Gage Blocks
Indicators ^{1,2}	(0.000 <mark>1 to 6) in</mark>	(5+8 <i>L</i>) µin	Comparison to Horizontal Measuring Machine
Calipers ^{1,2}	Up to 60 in (60 to 80) in	(5+8 <i>L</i>) μin (410 + 2 <i>L</i>) μin	Comparison to Gage Blocks
Micrometers OD ^{1,2}	Up to 12 in (12 to 24) in Up to 1 in <i>D</i>	(5+8L) μin (34 + 4.6L) μin	Comparison to Gage
Anvil Flatness	$(0 \text{ to } 84) \mu \text{in}$	4 μin	Blocks, Optical Parallels
Height Measuring Devices ^{1,2}	Up to 36 in (36 to 48) in	(43 + 1.7 <i>L</i>) μin (7 + 3 <i>L</i>) μin	Comparison to Gage Blocks
Grind Gages	Up to 100 mm	0.35 mm	Comparison to Digital Indicator
Coating Thickness Gages ^{1,2}	Up to 0.02 in	58 µin + 0.6 <i>R</i>	Comparison to Coating Thickness Standards
Coating Thickness Gage Standards	Up to 0.10 in	21 µin	Comparison to Horizontal Measuring Machine
External Diameter ^{1,2}	(0.000 1 to 1) in (1 to 12) in	(3 + 1 <i>L</i>) μin (3 + 3 <i>L</i>) μin	Comparison to Horizontal Measuring Machine
Internal Diameter ^{1,2}	(0.04 to 13) in	(3 + 3 <i>L</i>) μin	Comparison to Horizontal Measuring Machine
Thread Plugs ^{1,2} Pitch Diameter	Up to 8 in Pitch (0.2 to 5) mm	(81 + 2.3 <i>L</i>) μin	Comparison to Horizontal Measuring Machine
Major Diameter	Pitch 90 – 4 TPI Up to 4 in	$(3.5 + 4.6L) \mu in$	Thread Measuring Wires

This Scope of Accreditation, version 018, was last updated on: 03 July 2025 and is valid only when accompanied by the Certificate.

Page 27 of 70

1899 L Street NW, Suite 1100-A, Washington, DC 20036 414-501-5494 www.anab.org

Burnsville, MN

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Thread Rings (Adjustable) Pitch Diameter Tactile Fit (Set to Plug)	Up to 4 in	See footnote ⁵	Comparison to Thread Setting Plug
Optical Comparators ^{1,2} Linear Accuracy	Up to 6 in 6 to 12 in	(43 + 11 <i>L</i>) μin (30 + 7.5 <i>L</i>) μin	Comparison to Glass Scale
Magnification	(5 to 100) X	350 µin	Glass Scale (Sphere)
Surface Plates ^{1,2} Overall Flatness	Up to 54 in <i>DL</i> (54 to 238) in <i>DL</i>	(17 + 0.7 <i>DL</i>) μin (1 + 1.4 <i>DL</i>) μin	Comparison to Laser System
Local Area Flatness	Up to 238 inDL	34 <mark>µi</mark> n	Repeat-O-Meter
Roundness/Cylindricity Artifacts	Up to 150 mm	0.02 µm	Comparison to Rondcom41c
Surface Finish Artifacts	Up to 1 <mark>18 μin 118.1 to 500 μin 118.1 t</mark>	0.5 μin + 1 % of nominal 0.6 μin + 1.1 % of nominal	Comparison to Profilometer, Master Patch
Profilometers ¹	Up to 500 µin	0.7 µin + 1.1 % of nominal	Comparison to Master Patch
Optical Flats Parallelism Flatness	Up to 6 in <i>D</i> (0 to 80) μin	2.7 μin 3.5 μin	Gage Block Comparator, Master Flat
CMMs ^{1,2} Linearity	(0 to 144) in	(25 + 2.4 <i>L</i>) μin	Comparison to Laser Measuring System
Volumetric Repeatability	(6 to 24) in (0.5 to 2) in	66 μin 45 μin	Ball Bar CMM Sphere
VMMs ^{1,2}	Linearity	(32 + 4.1 <i>L</i>) μin	Comparison to Glass Scales
Graduated Scales ^{1,2} Glass, Steel, Tape	Up to 12 in (1 to 200) ft	(40 + 1 <i>L</i>) μin (10+ 3 <i>L</i>) μin	Comparison to Laser Measuring System
Horizontal Measuring Systems ^{1,2}	Up to 8 in (8 to 60) in	(6 + 1.7 <i>L</i>) μin (3 + 2.5 <i>L</i>) μin	Comparison to Gage Blocks

This Scope of Accreditation, version 018, was last updated on: 03 July 2025 and is valid only when accompanied by the Certificate.

Page 28 of 70

1899 L Street NW, Suite 1100-A, Washington, DC 20036 414-501-5494 www.anab.org

W

Burnsville, MN

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Bore Gages ² 2-point 3-point	(0.24 to 9) in	(4.3 + 3 <i>L</i>) μin + 0.6 <i>R</i> (85 + 7 <i>L</i>) μin + 0.6 <i>R</i>	Comparison to Horizontal Measuring Machine Cylindrical Rings
Protractors	(0 to 90)°	0.16°	Comparison to Sine Bar, Gage Blocks
Chamfer Gages ²	(0.179 to 2.749) in	280 μin + 0.6 <i>R</i>	Comparison to Chamfer Rings
Cylindrical Squares - Squareness Cylindricity	Up to 12 in	1.5 arc seconds 0.02 μm	Comparison to Gage Amplifier w/ probe, Master Square(s) Roundness Machine
Feeler/Thickness Gages ²	Up to 0.2 in	(4.3 + 3 <i>L</i>) μin	Comparison to Horizontal Measuring System
Gage Amplifier w/ Probe(s)	Up to 0.1 in	10 µin	Comparison to Gage Blocks
Gage Balls/Spheres ² – Diameter	Up to 6 in	(4.3 + 3D) μin	Comparison to Gage Blocks, Horizontal Measuring System
Roundness		0.02 μm	Roundness Machine
Indicator Calibrator ² - Linearity	Up to 6 in	60 µin + 0.6 <i>R</i>	Comparison to Horizontal Measuring System
Groove Micrometers ²	Up to 12 in	(44 + 2.6 <i>L</i>) μin+ 0.6 <i>R</i>	Comparison to Gage Blocks
Machinist Levels ² – Zero Check Linearity	Up to 24 in	350 μin (100 + 0.83 <i>L</i>) μin	Comparison to Master Level Gage Blocks
Microscopes, Stereo Reticle Linearity	Up to 2 in	870 µin	Comparison to Stage Micrometer
Microscopes – Toolmakers ² Scale Linearity	Up to 4 in	(774 + 70 <i>L</i>) μin + 0.6 <i>R</i>	Comparison to Stage Micrometer
Length Standards ²	(1 to 60) in	(3.4 + 3.5 <i>L</i>) μin	Comparison to Horizontal Measuring System

This Scope of Accreditation, version 018, was last updated on: 03 July 2025 and is valid only when accompanied by the Certificate.

Page 29 of 70

1899 L Street NW, Suite 1100-A, Washington, DC 20036 414-501-5494 www.anab.org

Burnsville, MN

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Micrometers – Inside ²	Up to 8 in 8 to 60 in	(6 + 1.7 <i>L</i>) μin (3 + 2.5 <i>L</i>) μin	Comparison to Horizontal Measuring System
Pi Tapes ² – Length	Up to 12 in	(4 <mark>0 + 1<i>L</i>) μin (10+ 3<i>L</i>) μin</mark>	Comparison to Laser System
Thickness	(12 to 200) in	240 µin	Micrometer
Parallels ² – Steel	Up to 18 in	(96 + 1.8 <i>L</i>) μin	Comparison to Electronic Amplifier with Probe
Granite		(49 + 0.7 <i>L</i>) μin	Surface Plate
Pitch Micrometer Standard ² Length	(1 to 65) in	(3.4 + 3.5 <i>L</i>) μin	Horizontal Measuring System
Angle	60°	0.004° (70 µin/ in)	Vision System
Radius Gages	(0.015 625 to 0.5) in	300 µin	Comparison to Vision System
Sine Plates/Bars ² –			Comparison to
Top Surface Flatness	Up to 0.1 in	(41 + 2.2 <i>L</i>) μin	Electronic Amplifier with Probe
Overall Length	Up to 10 in	$(3.4 + 3.5L) \mu in$	Horizontal Measuring System
Squares ²	Up to 18 in	0.32 m° (5.6 μin/ in)	Comparison to Electronic Amplifier with Probe, Master Square
Straightness and Straight Edges ²	Up to 60 in	(208 + 2.3 <i>L</i>) μin	Comparison to Electronic Amplifier with Probe, Surface Plate
Tapered Plugs ² - Pitch Diameter Major Diameter Step Height	(0.0625 to 6) in	(137 + 3.3 <i>L</i>) μin (123 + 6.7 <i>L</i>) μin 280 μin	Comparison to Horizontal Measuring System, Sine Block Thread Wires Height Gage
Roundness Machine - Roundness (Spindle Performance)	Up to 0.016 in	15 μin	Comparison to Master Sphere

This Scope of Accreditation, version 018, was last updated on: 03 July 2025 and is valid only when accompanied by the Certificate.

Page 30 of 70

1899 L Street NW, Suite 1100-A, Washington, DC 20036 414-501-5494 www.anab.org

Burnsville, MN

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Tapered Rings - Pitch Diameter Step Height	(0.0625 to 6) in	160 μin	Comparison to NPT Master Plug, Electronic Amplifier with Probe
Thickness Gages ² - Dial Digital	Up to 1 in	5 μin 410 μin + 0.6 <i>R</i> 44 μin+ 0.6 <i>R</i>	Height Gage Comparison to Gage Blocks
Thread Micrometers ² (Screw Thread, Pitch Point) Linearity Anvil Wear	Up to 12 in	$(44 + 2.6L) \mu in + 0.6R$ 690 µin	Comparison to Gage Blocks Thread Setting Plug
Granite V Blocks - Side Parallelism V Parallelism Squareness	Up to 12 in	(51 + 0.47 <i>L</i>) μin	Comparison to Electronic Amplifier with Probe, Surface Plate
Extensometers ¹	Up to 2 in	16 µin	Comparison to Extensometer Calibrator
Extensometers ¹ Gage Length	(0 to 2) in	78 µin	Comparison to Caliper

Mass and Mass Related

Burnsville, MN

			·
Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
	(0.035 to 16) ozf	0.017 % of reading	
	(1 to 10) lbf	0.018 % of reading	Comparison to Dead
	(10 to 50) lbf	0.018 % of reading	Weight
Force ¹	(50 to 500) lbf	0.036 % of reading	
Source and Measure	(500 to 100 000) lbf	0.04 % of reading	Comparison to Load Cells
	(30 000 to 400 000) lbf	0.29 % of applied value	Comparison to Load Cells, Class A (compression only)
Test Machine Crosshead	Up to 1 in	0.000 3 in	Comparison to Indicator
Displacement ^{1,2}	(1 to 36) in	(150 + 146 <i>L</i>) μin	Indicator/Gage Blocks

This Scope of Accreditation, version 018, was last updated on: 03 July 2025 and is valid only when accompanied by the Certificate.

Page 31 of 70

ANSI National Accreditation Board

Burnsville, MN

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Cable Tensiometers	Up to 600 lb (600 to 2 000) lb	1.2 % of applied value 1.3 % of applied value	Comparison to Dead Weight Load Cells
Viscometers ¹	Up to 25 cP (25 to 1 500) cP (1 500 to 75 000) cP	0.33 % of reading 0.52 % of reading 0.55 % of reading	Comparison to Viscosity Standards
Pressure ¹	(10 to 17) psia	0.000 4 psi	Comparison to Pressure Calibrator
Pressure	(-14.5 to -0.5) psi (1 to 500) psi (500 to 10 000) psi	65 μpsi/psi 65 μpsi/psi 70 μpsi/psi	Comparison to Dead Weight Tester
Pressure	(0 to 2) inH2O (2 to 60) inH2O	0.000 35 inH2O 0.009 1 % of reading + 0.000 3 inH2O	Comparison to Fluke 7250LP Low Pressure Calibrator
Mass Flow (Gas)	(5 to 50 000) SCCM (0.5 to 50) SLPM (50 to 500) SLPM	0.25 % of reading 0.22 % of reading 0.2 % of reading	Comparison to Mesa Flow System
Air Velocity	30 FPM (40 to 60) FPM (60 to 150) FPM (150 to 275) FPM (275 to 9000) FPM	5.1 % of reading 2.6 % of reading 1.2 % of reading 0.99 % of reading 0.74 % of reading	Comparison to Wind Tunnel with Pitot Tube
Torque Tools ¹	(2 to 20) ozf·in (20 to 200) ozf·in (20 to 200) ozf·in (5 to 50) lbf·in (50 to 400) lbf·in (400 to 1000) lbf·in (80 to 250) lbf·ft (250 to 600) lbf·ft (600 to 2 000) lbf·ft	0.1 % of reading $+$ 0.006 1 ozf·in 0.08% of reading $+$ 0.14 ozf·in 0.33 % of reading 0.36 % of reading 0.4 % of reading 0.28 % of reading 0.51 % of reading 0.75 % of reading	Comparison to Torque Tester
Torque Transducers ¹	0.5 ozf·in to 1 000 lbf·ft (1 000 to 2 000) lbf·ft	0.08 % of reading 0.09 % of reading	Comparison to Dead Weight Torque Arms
Graduated Cylinders	(1 to 200) mL (100 to 1 000) mL (600 to 6 000) mL	1.9 μL 3.2 μL 26 μL	Comparison to Balances

This Scope of Accreditation, version 018, was last updated on: 03 July 2025 and is valid only when accompanied by the Certificate.

Page 32 of 70

1899 L Street NW, Suite 1100-A, Washington, DC 20036 414-501-5494 www.anab.org

W

Burnsville, MN

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Pipettes	Up to 1 μL (1 to 5) μL (5 to 10) μL (10 to 20) μL (20 to 50) μL (50 to 100) μL (100 to 200) μL (200 to 500) μL	0.041 μL 0.033 μL 0.028 μL 0.034 μL 0.046 μL 0.061 μL 0.27 μL 0.3 μL	Comparison to Pipette Calibration System
	(500 to 1 000) μL (1 000 to 10 000) μL (10 to 20) mL	0.79 μL 2.7 μL 5.8 μL	
Scales and Balances ^{1,6}	Up to 5 mg (5 to 500) mg 500 mg to 5 g (5 to 10) g (10 to 20) g (20 to 50) g (50 to 100) g (100 to 250) g	0.005 mg 0.006 mg 0.007 mg 0.012 mg 0.014 mg 0.024 mg 0.086 mg 0.092 mg	Comparison to OIML E2 Class 1 Weights
Scales and Balances ^{1,6}	250 g to 1.1 kg (1.1 to 6.1) kg (6.1 to 33) kg	1.4 mg 9 mg 90 mg	Comparison to OIML E2 Class 1 Weights
	(0.5 to 2 000) lb	0.01 % of reading	Comparison to Class 6 Weights
Mass	1 mg to 50 g (50 to 100) g (100 to 250) g (250 to 500) g (500 to 1 kg (1 to 6) kg (6 to 25) kg	0.01 mg 0.03 mg 0.12 mg 0.17 mg 0.9 mg 9 mg 90 mg	Comparison to Class 1 Weights
Microindentation Hardness Testers ¹ (Knoop and Vickers)	Repeatability under forces (gf): 100 ≤ HK ≥ 500 HV = 100	2.1 % of Reading 4.1 % of Reading	Indirect Verification to Test Blocks

This Scope of Accreditation, version 018, was last updated on: 03 July 2025 and is valid only when accompanied by the Certificate.

Page 33 of 70

1899 L Street NW, Suite 1100-A, Washington, DC 20036 414-501-5494 www.anab.org

V

Burnsville, MN

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Brinell Hardness Testers ¹	Repeatability at: 500 kgf $\leq 100 \text{ HBW}$ $\geq 64 \text{ HBW}$ 1 500 kgf $\leq 257 \text{ HBW}$ $\geq 91 \text{ HBW}$ 3 000 kgf $\leq 587 \text{ HBW}$ $\geq 186 \text{ HBW}$	0.025 mm 0.025 mm 0.025 mm 0.03 mm 0.025 mm 0.025 mm	Indirect Verification to Test Blocks
Rockwell Hardness Testers ¹	HRA Low HRA Middle HRA High HRBW Low HRBW Middle HRBW High HRC Low HRC Middle HRC High HREW Low HREW Middle HREW High HRMW Low HRMW Middle HRMW High HR15N Low HR15N Low HR15N High HR15TW Low HR15TW Low	0.69 HRA 0.62 HRA 0.36 HRA 0.36 HRA 0.53 HRBW 0.53 HRBW 0.9 HRBW 0.9 HRBW 0.54 HRC 0.7 HRC 1.2 HRC 0.49 HREW 0.39 HREW 0.39 HREW 0.39 HREW 0.39 HREW 0.39 HREW 0.39 HREW 0.55 HRMW 0.65 HRMW 0.65 HRMW 0.65 HRMW 0.65 HRMW 0.65 HRMW 0.67 HR15N 0.36 HR15N 0.87 HR15TW 0.72 HR15TW 0.72 HR15TW	Indirect Verification to Test Blocks

This Scope of Accreditation, version 018, was last updated on: 03 July 2025 and is valid only when accompanied by the Certificate.

Page 34 of 70

1899 L Street NW, Suite 1100-A, Washington, DC 20036 414-501-5494 www.anab.org

W

Burnsville, MN

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Rockwell Hardness Testers ¹	HR30N Low HR30N Middle HR30N High	0.87 HR30N 0.91 HR30N 0.36 HR30N	Indirect Verification to Test Blocks
	HR30TW Low HR30TW Middle HR30TW High	0.54 HR30TW 0.72 HR30TW 0.39 HR30TW	
	HR45N Low HR45N Middle HR45N High	0.64 HR45N 1.2 HR45N 0.34 HR45N	
	HR45TW Low HR45TW Middle HR45TW High	0.92 HR45TW 0.92 HR45TW 0.61 HR45TW	
Durometers Spring Force		ALL	Full Direct Verification
Types A, B, E, O	Up to 100 Duro	0.31 Duro	Shore Durometer
Types C, D, and DO Types M, OO, OOO, OOO-S	Up to 100 Duro Up to 100 Duro	0.15 Duro 0.32 Duro	Calibrator Balance
Indenter Angle Indenter Length Indenter Radius	(20 to 40)° (0.049 to 0.198) in (0.05 to 0.1) in	0.004° 220 μin 250 μin	VMM

Thermodynamic

Burnsville, MN

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Temperature - Measure	(-200 to -20) °C (-20 to 120) °C (120 to 200) °C (200 to 300) °C (300 to 660) °C	0.006 2 °C 0.001 7 °C 0.023 °C 0.023 °C 0.024 °C	Comparison to Fluke 5699 SPRT Fluke 1590 Super Thermometer

This Scope of Accreditation, version 018, was last updated on: 03 July 2025 and is valid only when accompanied by the Certificate.

Page 35 of 70

1899 L Street NW, Suite 1100-A, Washington, DC 20036 414-501-5494 www.anab.org

Thermodynamic

Burnsville, MN

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Temperature – Source	(-95 to -20) °C (-20 to 120) °C (120 to 425) °C (425 to 660) °C	0.032 °C 0.001 7 °C 0.038 °C 0.063 °C	Comparison to SPRT, Fluke 1590 Super Thermometer With liquid baths and Metrology Well
Radiation (Infrared) Thermometers	(-15 to 0) °C (0 to 100) °C (100 to 200) °C (200 to 350) °C (350 to 500) °C	0.54 ℃ 0.69 ℃ 1.1 ℃ 1.6 ℃ 2.4 ℃	Comparison to Fluke 4180 and 4181 Black Body Calibrators $\lambda = (8 \text{ to } 14) \mu \text{m},$ $\mathcal{E} = (0.9 \text{ to } 1.0)$
Humidity Measure ¹	(0 to 2) %RH (5 to 10) %RH (10 to 50) %RH (50 to 90) %RH (90 to 95) %RH	1.2 %RH 0.56 %RH 0.5 %RH 0.55 %RH 0.55 %RH 0.58 %RH	Comparison to Humidity Indicator
Humidity Source	0 % <mark>RH</mark> (5 to 10) %RH (10 to 98) %RH	0.62 %RH 0.56 %RH 0.5 % of reading	Comparison to Nitrogen with Rotronic Humidity Indicator Thunder Scientific 2900

Time and Frequency

Burnsville, MN

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Frequency – Reference ⁴	10 MHz	5 x 10 ⁻¹¹ MHz	Comparison to SRS FS Rubidium GPS Disciplined Oscillator

DIMENSIONAL MEASUREMENT

2 Dimensional

Rur	nsvil	le 🛛	MN

Specific Tests and / or Properties Measured	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method and/or Equipment
Angle	(0.25 to 365)°	0.69m° (12 μin/ in)	Comparison to Gage Blocks, Gage Amplifier, Sine Bar

This Scope of Accreditation, version 018, was last updated on: 03 July 2025 and is valid only when accompanied by the Certificate.

Page 36 of 70

1899 L Street NW, Suite 1100-A, Washington, DC 20036 414-501-5494 www.anab.org

2 Dimensional

Burnsville, MN

Specific Tests and / or Properties Measured	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method and/or Equipment
Angle	(0.25 to 365)°	0.004°	Comparison to Coordinate Measuring Machine
Non-contact	(12 x 8 x 4) in	(44 + 1 <i>L</i>) μin	Comparison to Vision System
Roundness/Cylindricity	Up to 150 mm	0.02 μm	Comparison to Rondcom41c
Surface Finish Analysis	Up to 118 µin (118.1 to 500) µin	$\frac{0.5 \mu \text{in} + 1}{0.6 \mu \text{in} + 1.1 \% \text{ of nominal}}$	Comparison to Profilometer, Master Patch

3 Dimensional

Burnsville, MN

Specific Tests and / or Properties Measured	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method and/or Equipment
Dimensional Inspection Contact	(28 x 40 <mark>x 28) in</mark>	(74 + 4.7 <i>L</i>) μin	Comparison to Coordinate Measuring Machine

Return to Site listing (top)

Go to Notes (bottom)

This Scope of Accreditation, version 018, was last updated on: 03 July 2025 and is valid only when accompanied by the Certificate.

Page 37 of 70

1899 L Street NW, Suite 1100-A, Washington, DC 20036 414-501-5494 www.anab.org

Services performed at satellite laboratory

1208 Allanson Road, Mundelein, IL 60060 847-566-3700 mkey@martincalibration.com General Manager: Mark Key

CALIBRATION

Chemical Quantities				Mundelein, IL
Parameter/Equipment	Range	_	Incertainty of ment (+/-)	Reference Standard, Method, and/or Equipment
pH Meters ¹	4 pH 7 pH 10 pH	0.01	l6 pH l6 pH l6 pH	Comparison to Buffer Solutions

Electrical – DC/Low Frequency

Electrical Deleter Frequency			
Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
DC Voltage – Source ¹ fixed point	10V	0.3 μV/V	Comparison to 732BVoltage Standards with Fluke Maps
DC Voltage – Source ¹	0V Up to 1 mV (1 to 10) mV (10 to 100) mV (100 mV to 1) V (1 to 10) V (10 to 100) V (100 to 1 100) V	$\begin{array}{c} 20 \text{ nV} \\ 100 \text{ nV} \\ 22 \mu \text{V/V} + 25 \text{ nV} \\ 5.3 \mu \text{V/V} \\ 0.5 \mu \text{V/V} \\ 0.31 \mu \text{V/V} \\ 0.35 \mu \text{V/V} \\ 1 \mu \text{V/V} \end{array}$	Comparison to MI Potentiometer/ Divider & Fluke 5720A Multi Product Calibrator
DC Voltage – Measure ¹	0V Up to 1 mV (1 to 10) mV (10 to 100) mV (100 mV to 1) V (1 to 10) V (10 to 100) V (100 to 1 100) V	$\begin{array}{c} 20 \text{ nV} \\ 100 \text{ nV} \\ 22 \mu \text{V/V} + 25 \text{ nV} \\ 5.3 \mu \text{V/V} \\ 0.5 \mu \text{V/V} \\ 0.31 \mu \text{V/V} \\ 0.35 \mu \text{V/V} \\ 1 \mu \text{V/V} \end{array}$	Comparison to Nano Voltmeter, Fluke 732BVoltage Standard with MI Potentiometer/ Divider
DC Voltage – Measure ¹	(1.05 to 100) kV	0.1 % of reading	Comparison to Hipotronics KVM100-A High Voltage Meter

This Scope of Accreditation, version 018, was last updated on: 03 July 2025 and is valid only when accompanied by the Certificate.

1899 L Street NW, Suite 1100-A, Washington, DC 20036 414-501-5494 www.anab.org

Page 38 of 70

н

Mundelein, IL

Mundelein, IL

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
DC Current – Source & Measure ¹	Up to 100 nA (0.1 to 1) µA (1 to 10) µA (10 to 100) µA (0.1 to 1) mA (1 to 10) mA (10 to 100) mA (0.1 to 1) A	22 pA 30 μA/A 6.8 μA/A 6.2 μA/A 4.1 μA/A 4.2 μA/A 3.9 μA/A 17 μA/A	Comparison to Standard resistors and DMM and Multifunction Calibrator
DC Current – Source & Measure ¹	(1 to 10) A (10 to 20) A (20 to 100) A	80 μA/A + 80 μA 80 μA/A + 800 μA 80 μA/A + 40 mA	Comparison to Fluke 52120A Amplifier
DC Current – Source ¹	(100 to 150) A (150 to 1 025) A	5 mA/A + 20 mA 5.1 mA/A + 0.9 A	Comparison to Fluke 5520A Multi Product Calibrator with 50-turn Coil
AC Voltage – Source & Measure ¹	(0 to 2.2) mV (10 to 20) Hz (20 to 40) Hz (0.04 to 20) kHz (20 to 50) kHz (50 to 100) kHz (100 to 300) kHz (300 to 500) kHz (0.5 to 1) MHz (2.2 to 7) mV (10 to 20) Hz (20 to 40) Hz (20 to 40) Hz (20 to 50) kHz (20 to 50) kHz (50 to 100) kHz (100 to 300) kHz (300 to 500) kHz (0.5 to 1) MHz	0.035 % of reading + 1.3 μ V 0.037 % of reading + 1.3 μ V 0.04 % of reading + 1.3 μ V 0.025 % of reading + 2 μ V 0.027 % of reading + 2.5 μ V 0.033 % of reading + 4 μ V 0.036 % of reading + 4 μ V 0.02 % of reading + 8 μ V 0.022 % of reading + 1.3 μ V 0.022 % of reading + 1.3 μ V 0.022 % of reading + 1.3 μ V 0.014 % of reading + 2.5 μ V 0.029 % of reading + 4 μ V 0.055 % of reading + 8 μ V	Comparison to Fluke 5790A AC Standard w/ 5720A Multi Product Calibrator
AC Current – Source and Measure ¹	Up to 10 mA (0.01 to 100) kHz (10 to 20) mA (0.01 to 100) kHz (20 to 200) mA (0.01 to 100) kHz	250 μA/A 250 μA/A 250 μA/A	Comparison to Fluke 5720A Multi Product Calibrator and Fluke 5725A Amplifier w/ A40B Shunts

This Scope of Accreditation, version 018, was last updated on: 03 July 2025 and is valid only when accompanied by the Certificate.

Page 39 of 70

1899 L Street NW, Suite 1100-A, Washington, DC 20036 414-501-5494 www.anab.org

'

Mundelein, IL

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
	(0.2 A to 20) A		Comparison to Fluke
AC Current –	0.01 to 1) kHz	250 μΑ/Α	5720A Multi Product
Source and Measure ¹	(1 to 10) kHz	<mark>250</mark> μΑ/Α	Calibrator and
Source and measure	(10 to 30) kHz	300 μA/A	Fluke 5725A Amplifier w/
	(30 to 100) kHz	<u>350 μ</u> Α/Α	A40B Shunts
AC Current – Source and Measure ¹	(20 to 100) A	0.015 % of reading	Comparison to Fluke 52120A Amplifier
AC Current – Source ¹			
	(10 to 16.5) A	5.9 mA/A + 30 mA	
(45 to 65) Hz	(16.5 to 150) A	5.7 mA/A + 25 mA	Comparison to Fluke
	(150 to 1 025) A	5.7 mA/A + 0.9 A	5520A Multi Product Calibrator with 50-turn
	(10 to 16.5) A	11 mA/A + 30 mA	Coil
(65 to 440) Hz	(16.5 to 150) A	10 mA/A + 0.25 A	
	(150 to 1 025) A	13 mA/A + 0.9 A	
	Up to 200 μA		
	(1 to 10) Hz	0.62 mA/A	
	10 Hz to 10 kHz	0.54 mA/A	
	(10 to 30) kHz	0.94 mA/A	
	(30 to 100) kHz	8.4 mA/A	
	$200 \mu\text{A}$ to 2mA		
	(1 to 10) Hz	0.6 mA/A	
	10 Hz to 10 kHz	0.54 mA/A	
	(10 to 30) kHz	0.94 mA/A	
	(30 to 100) kHz	4.2 mA/A	
AC Current – Measure ¹	(2 to 20) mA (1 to 10) Hz	0.6 mA/A	Comparison to Fluke
AC Current – Measure	10 Hz to 10 kHz	0.54 mA/A	8508A Multimeter
	(10 to 30) kHz	0.94 mA/A	
	(30 to 100) kHz	4.2 mA/A	
	(20 to 200) mA	7.2 111 1/1	
	(1 to 10) Hz	0.57 mA/A	
	10 Hz to 10 kHz	0.49 mA/A	
	(10 to 30) kHz	0.83 mA/A	
	200 mA to 2 A		
	10 Hz to 2 kHz	0.83 mA/A	
	(2 to 10) kHz	0.93 mA/A	
	(10 to 30) kHz	3.2 mA/A	

This Scope of Accreditation, version 018, was last updated on: 03 July 2025 and is valid only when accompanied by the Certificate.

Page 40 of 70

1899 L Street NW, Suite 1100-A, Washington, DC 20036 414-501-5494 www.anab.org

'

Mundelein, IL

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
AC Current – Measure ¹	(2 to 20) A 10 Hz to 2 kHz (2 to 10) kHz	1 mA/A 2.7 mA/A	Comparison to Fluke 8508A Multimeter
Resistance – Source ¹	$\begin{array}{c} 0.001 \ \Omega \\ 0.01 \Omega \\ 0.1 \ \Omega \\ 1 \Omega \\ 10 \Omega \\ 100 \ \Omega \\ 1 \ k \Omega \\ 100 \ k \Omega \\ 100 \ k \Omega \\ 100 \ k \Omega \\ 1 \ M \Omega \\ 100 \ M \Omega \\ 100 \ M \Omega \\ 100 \ M \Omega \\ 1 \ G \Omega \end{array}$	$\begin{array}{c} 3.5 \ \mu\Omega/\Omega \\ 4.3 \ \mu\Omega/\Omega \\ 1.5 \ \mu\Omega/\Omega \\ 0.85 \ \mu\Omega/\Omega \\ 0.66 \ \mu\Omega/\Omega \\ 1.7 \ \mu\Omega/\Omega \\ 1.2 \ \mu\Omega/\Omega \\ 2.4 \ \mu\Omega/\Omega \\ 1.3 \ \mu\Omega/\Omega \ \Omega \\ 14 \ \mu\Omega/\Omega \\ 130 \ \mu\Omega/\Omega \\ 0.32 \ \mu\Omega/\Omega \end{array}$	Comparison to Standard resistors Comparison to Decade
Resistance – Source ¹	(0.01 to 10) MΩ (0.01 to 10) GΩ	10 μΩ/Ω 0.5 % of reading	resistors with bridge and DMM
Resistance – Source ¹	(10 to 100) GΩ	1.2 % of reading	Comparison to Decade Resistor
Resistance – Measure ¹ Normal Mode	$(10 \text{ to } 100) \mu\Omega$ $(0.1 \text{ to } 1) \text{ m}\Omega$ $(1 \text{ to } 10) \text{ m}\Omega$ $(1 \text{ to } 100) \text{ m}\Omega$ $(0.1 \text{ to } 1) \Omega$ $(1 \text{ to } 10) \Omega$ $(1 \text{ to } 100) \Omega$ $(0.01 \text{ to } 1) \text{ k}\Omega$ $(1 \text{ to } 100) \text{ k}\Omega$ $(1 \text{ to } 100) \text{ k}\Omega$ $(0.1 \text{ to } 1) \text{ M}\Omega$ $(1 \text{ to } 10) \text{ M}\Omega$ $(1 \text{ to } 10) \text{ M}\Omega$ $(1 \text{ to } 10) \text{ M}\Omega$ $(2 \text{ to } 200) \text{ M}\Omega$ $(0.2 \text{ to } 2) \text{ G}\Omega$ $(2 \text{ to } 20) \text{ G}\Omega$	$\begin{array}{c} 0.15 \ \mbox{\ of reading} \\ 15 \ \mbox{\ \mu}\Omega/\Omega \\ 5.1 \ \mbox{\ \mu}\Omega/\Omega \\ 1.8 \ \mbox{\ \mu}\Omega/\Omega \\ 0.92 \ \mbox{\ \mu}\Omega/\Omega \\ 0.92 \ \mbox{\ \mu}\Omega/\Omega \\ 1.7 \ \mbox{\ \mu}\Omega/\Omega \\ 1.7 \ \mbox{\ \mu}\Omega/\Omega \\ 2.4 \ \mbox{\ \mu}\Omega/\Omega \\ 2.4 \ \mbox{\ \mu}\Omega/\Omega \\ 1.1 \ \mbox{\ \mu}\Omega/\Omega \\ 21 \ \mbox{\ \mu}\Omega/\Omega \\ 21 \ \mbox{\ \mu}\Omega/\Omega \\ 72 \ \mbox{\ \mu}\Omega/\Omega + 1k\Omega \\ 0.18 \ \mbox{\ m}\Omega/\Omega + 100 \ \mbox{\ k}\Omega \\ 0.67 \ \mbox{\ m}\Omega/\Omega + 10 \ \mbox{\ M}\Omega \end{array}$	Comparison to Decade resistors with bridge and DMM

This Scope of Accreditation, version 018, was last updated on: 03 July 2025 and is valid only when accompanied by the Certificate.

1899 L Street NW, Suite 1100-A, Washington, DC 20036 414-501-5494 www.anab.org

'W

Mundelein, IL

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Resistance – Measure ¹ High Voltage Mode up to 200 V	(2 to 20) MΩ (20 to 200) MΩ 200 MΩ to 2 GΩ (2 to 20) GΩ	$15 \ \mu \Omega / \Omega + 10 \ \Omega$ $60 \ \mu \Omega / \Omega + 1 \ k\Omega$ $0.15 \ m \Omega / \Omega + 100 \ k\Omega$ $0.53 \ m \Omega / \Omega + 10 \ M\Omega$	Comparison to Decade resistors with bridge and DMM
Capacitance – Measure ¹	1 pF @ 1 kHz 10 pF @ 1 kHz 100 pF @ 1 kHz 1 nF 1kHz 1 μF @ 1 kHz	1.9 mF/F 1.1 mF/F 1.2 mF/F 1.2 mF/F 1.2 mF/F	Comparison to QuadTech 1730 LCR Meter
Capacitance – Source ¹ (fixed values) @ 100 Hz @ 1 kHz	1 pF 1 nF 10 nF 100 nF 1 μF	1.8 mF/F 0.23 mF/F 0.25 mF/F 0.21 mF/F 0.25 mF/F	Comparison to Standard Capacitors
Capacitance – Source ¹ 10 Hz to 10 kHz 10 Hz to 3 kHz 10 Hz to 1 kHz 10 Hz to 1 kHz 10 Hz to 1 kHz 10 Hz to 1 kHz (10 to 600) Hz 10 Hz to 300 Hz 10 Hz to 300 Hz 10 Hz to 150 Hz 10 Hz to 80 Hz (0 to 50) Hz (0 to 6) Hz (0 to 2) Hz (0 to 0.6) Hz (0 to 0.2) Hz	0.19 nF to 1.1 nF (1.1 to 3.3) nF (3.3 to 11) nF (11 to 110) nF (110 to 330) nF 330 nF to 1.1 μ F (1.1 to 3.3) μ F (3.3 to 11) μ F (11 to 33) μ F (33 to 110) μ F (110 to 330) μ F 330 μ F to 1.1 mF (1.1 to 3.3) mF (3.3 to 11) mF (1.1 to 3.3) mF (3.3 to 11) mF (11 to 33) mF (33 to 110) mF	15 mF/F 8.4 mF/F 3.6 mF/F 3.6 mF/F 3.6 mF/F 3.6 mF/F 3.6 mF/F 5.1 mF/F 5.6 mF/F 5.6 mF/F 5.6 mF/F 5.5 mF/F 5.5 mF/F 8.5 mF/F 12 mF/F	Comparison to Fluke 5520A Multi Product Calibrator
Inductance – Measure ¹	100 μH @ 1 kHz 1 mH @ 1 kHz 10 mH @ 1 kHz 100 mH @ 1 kHz 1 H @ 1 kHz	1.2 mH/H	Comparison to QuadTech 1730 LCR Meter

This Scope of Accreditation, version 018, was last updated on: 03 July 2025 and is valid only when accompanied by the Certificate.

Page 42 of 70

1899 L Street NW, Suite 1100-A, Washington, DC 20036 414-501-5494 www.anab.org

'W

Mundelein, IL

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Inductance – Source ¹	500 μH @ 100 Hz 500 μH @ 1 kHz 2 mH @ 100 Hz 2 mH @ 1 kHz 20 mH @ 100 Hz 20 mH @ 1 kHz	1.2 mH/H 1 mH/H 1.1 mH/H 1 mH/H 1.1 mH/H 1 mH/H	Comparison to Standard Inductors
Inductance – Source ¹	1 H @ 100 Hz 1 H @ 1 kHz 10 H @ 100 Hz 10 H @ 1 kHz	1 mH/H 1 mH/H 1 mH/H 1 mH/H	Comparison to Standard Inductors
Oscilloscopes ¹ Square Wave Signal 50 Ω at 1 kHz Square Wave Signal	40 μV to 5 V	1 mV/V	Comparison to Fluke 9500B/3200/9530 Oscilloscope Calibrator
$1 \text{ M}\Omega \text{ at } 1 \text{ kHz}$	40 μV <mark>to 5 V</mark>	1 mV/V	
Oscilloscopes ¹ DC Voltage, 50 Ω DC Voltage, 1 MΩ	1 mV to 5 V 1 mV to 200 V	0.26 mV/V 0.25 mV/V	
Leveled Sine Wave Amplitude	5 mV to 5 V	15 mV/V	
Leveled Sine Wave Flatness (relative to 50 kHz)	4.4 mVpp to 5.6 Vpp 0.1 Hz to 300 MHz (300 to 550) MHz 4.4 mVpp to 3.3 Vpp 550 MHz to 1.1 GHz (1.1 to 3.2) GHz	43 mV/V 43 mV/V 52 mV/V 52 mV/V	Comparison to Fluke 9500B/3200/9530 Oscilloscope Calibrator
Time Marker 50 Ω Source and Period		0.25 μs/s	
Rise/Fall Time - Source	9 ns to 55 s		
Pulse Width - Source	150 ps (1 to 100) ns	27 ps 52 ms/s	

This Scope of Accreditation, version 018, was last updated on: 03 July 2025 and is valid only when accompanied by the Certificate.

Page 43 of 70

1899 L Street NW, Suite 1100-A, Washington, DC 20036 414-501-5494 www.anab.org

Mundelein, IL

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Electrical Simulation of Thermocouple Indicators ¹	Type B (250 to 350) °C (350 to 445) °C (445 to 580) °C (580 to 750) °C (750 to 1 000) °C (1 000 to 1 820) °C Type C (0 to 250) °C (250 to 1 000) °C (1 000 to 1 500) °C (1 500 to 1 800) °C (1 800 to 2 000) °C (2 000 to 2 250) °C (2 250 to 2 315) °C Type E (-270 to -245) °C (-195 to -155) °C (-195 to -155) °C (-155 to -90) °C (-150 to 990) °C (890 to 1 000) °C (50 to 990) °C (-210 to -180) °C (-120 to -50) °C (-120 to -50) °C (-120 to -50) °C (-155 to -195) °C (-150 to 990) °C (-270 to -255) °C (-255 to -195) °C (-155 to -115) °C (-115 to -55) °C (-155 to 1000) °C (-55 to 1 000) °C (1 000 to 1 372) °C	$ \begin{array}{c} 1.1 \ ^{\circ}\text{C} \\ 0.85 \ ^{\circ}\text{C} \\ 0.67 \ ^{\circ}\text{C} \\ 0.52 \ ^{\circ}\text{C} \\ 0.43 \ ^{\circ}\text{C} \\ 0.33 \ ^{\circ}\text{C} \\ 0.21 \ ^{\circ}\text{C} \\ 0.21 \ ^{\circ}\text{C} \\ 0.27 \ ^{\circ}\text{C} \\ 0.33 \ ^{\circ}\text{C} \\ 0.37 \ ^{\circ}\text{C} \\ 1.4 \ ^{\circ}\text{C} \\ 0.37 \ ^{\circ}\text{C} \\ 1.4 \ ^{\circ}\text{C} \\ 0.12 \ ^{\circ}\text{C} \\ 0.09 \ ^{\circ}\text{C} \\ 0.08 \ ^{\circ}\text{C} \\ 0.14 \ ^{\circ}\text{C} \\ 0.08 \ ^{\circ}\text{C} \\ 0.14 \ ^{\circ}\text{C} \\ 0.10 \ ^{\circ}\text{C} \\ 0.10 \ ^{\circ}\text{C} \\ 0.08 \ ^{\circ}\text{C} \\ 0.08 \ ^{\circ}\text{C} \\ 0.09 \ ^{\circ}\text{C} \\ 0.09 \ ^{\circ}\text{C} \\ 0.08 \ ^{\circ}\text{C} \\ 0.09 \ ^{\circ}\text{C} \\ 0.00 \ $	Comparison to Ectron 1140A Thermocouple Simulator

This Scope of Accreditation, version 018, was last updated on: 03 July 2025 and is valid only when accompanied by the Certificate.

Page 44 of 70

1899 L Street NW, Suite 1100-A, Washington, DC 20036 414-501-5494 www.anab.org

W

Mundelein, IL

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Electrical Simulation of Thermocouple Indicators ¹	Type N (-270 to -260) °C (-260 to -200) °C (-200 to -140) °C (-140 to -70) °C (-70 to 25) °C (25 to 160) °C (160 to 1 300) °C Type R (-50 to -30) °C (45 to 160) °C (45 to 160) °C (45 to 160) °C (380 to 775) °C (775 to 1 768) °C Type S (-50 to -30) °C (-30 to -45) °C (-45 to -105) °C (-105 to 310) °C (310 to 615) °C (-255 to -240) °C (-255 to -240) °C (-210 to -150) °C (-150 to -40) °C (-150 to -40) °C (-40 to 100) °C (100 to 400) °C	$5.8 \ ^{\circ}C$ $1.2 \ ^{\circ}C$ $0.27 \ ^{\circ}C$ $0.17 \ ^{\circ}C$ $0.14 \ ^{\circ}C$ $0.12 \ ^{\circ}C$ $0.13 \ ^{\circ}C$ $0.35 \ ^{\circ}C$ $0.35 \ ^{\circ}C$ $0.33 \ ^{\circ}C$ $0.25 \ ^{\circ}C$ $0.38 \ ^{\circ}C$ $0.33 \ ^{\circ}C$ $0.35 \ ^{\circ}C$ $0.35 \ ^{\circ}C$ $0.21 \ ^{\circ}C$ $0.14 \ ^{\circ}C$ $0.09 \ ^{\circ}C$ $0.08 \ ^{\circ}C$	Comparison to Ectron 1140A Thermocouple Simulator

This Scope of Accreditation, version 018, was last updated on: 03 July 2025 and is valid only when accompanied by the Certificate.

Page 45 of 70

1899 L Street NW, Suite 1100-A, Washington, DC 20036 414-501-5494 www.anab.org

Mundelein, IL

Electrical Simulation of RTD Indicators 1 RTD Indicators 1 Electrical Simulation of RTD Indicators 1 RTD Indicators 1 $Electrical Simulation of RTD Indicators 1 RTD Indicators 1 Electrical Simulation of RTD Indicators 1 RTD Indicators 1 Electrical Simulation of RTD Indicators 1 RTD Indicators 1 RTD Indicators 1 Electrical Simulation of RTD Indicators 1 RTD Indicator $	Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
(-80 to 100) °C 0.06 °C $(100 to 260)$ °C 0.07 °C $(260 to 400)$ °C 0.09 °C $(400 to 600)$ °C 0.01 °C $(600 to 630)$ °C 0.13 °C		$\begin{array}{c} (-200 \text{ to } 0) \ ^{\circ}\text{C} \\ (0 \text{ to } 100) \ ^{\circ}\text{C} \\ (100 \text{ to } 300) \ ^{\circ}\text{C} \\ (300 \text{ to } 400) \ ^{\circ}\text{C} \\ (400 \text{ to } 630) \ ^{\circ}\text{C} \\ (630 \text{ to } 800) \ ^{\circ}\text{C} \\ (630 \text{ to } 800) \ ^{\circ}\text{C} \\ (630 \text{ to } 0) \ ^{\circ}\text{C} \\ (0 \text{ to } 100) \ ^{\circ}\text{C} \\ (0 \text{ to } 100) \ ^{\circ}\text{C} \\ (100 \text{ to } 300) \ ^{\circ}\text{C} \\ (300 \text{ to } 400) \ ^{\circ}\text{C} \\ (400 \text{ to } 630) \ ^{\circ}\text{C} \\ (400 \text{ to } 630) \ ^{\circ}\text{C} \\ (-200 \text{ to } -190) \ ^{\circ}\text{C} \\ (-200 \text{ to } -190) \ ^{\circ}\text{C} \\ (-190 \text{ to } -80) \ ^{\circ}\text{C} \\ (-190 \text{ to } -80) \ ^{\circ}\text{C} \\ (0 \text{ to } 100) \ ^{\circ}\text{C} \\ (100 \text{ to } 260) \ ^{\circ}\text{C} \\ (260 \text{ to } 300) \ ^{\circ}\text{C} \\ (300 \text{ to } 400) \ ^{\circ}\text{C} \\ (400 \text{ to } 600) \ ^{\circ}\text{C} \\ (260 \text{ to } 300) \ ^{\circ}\text{C} \\ (260 \text{ to } 300) \ ^{\circ}\text{C} \\ (260 \text{ to } 300) \ ^{\circ}\text{C} \\ (300 \text{ to } 400) \ ^{\circ}\text{C} \\ (400 \text{ to } 600) \ ^{\circ}\text{C} \\ (300 \text{ to } 400) \ ^{\circ}\text{C} \\ (400 \text{ to } 630) \ ^{\circ}\text{C} \\ (-200 \text{ to } -80) \ ^{\circ}\text{C} \\ (-200 \text{ to } -80) \ ^{\circ}\text{C} \\ (-200 \text{ to } -80) \ ^{\circ}\text{C} \\ (-80 \text{ to } 100) \ ^{\circ}\text{C} \\ (-80 \text{ to } 400) \ ^{\circ}\text{C} \\ (-80 \text{ to } 400) \ ^{\circ}\text{C} \\ (-80 \text{ to } 600) \ ^{\circ}$	$\begin{array}{c} 0.06 \ ^{\circ}\text{C} \\ 0.08 \ ^{\circ}\text{C} \\ 0.11 \ ^{\circ}\text{C} \\ 0.12 \ ^{\circ}\text{C} \\ 0.14 \ ^{\circ}\text{C} \\ 0.27 \ ^{\circ}\text{C} \\ \end{array}$	Comparison to Fluke 5520A Multi Product

This Scope of Accreditation, version 018, was last updated on: 03 July 2025 and is valid only when accompanied by the Certificate.

Page 46 of 70

1899 L Street NW, Suite 1100-A, Washington, DC 20036 414-501-5494 www.anab.org

'W

Mundelein, IL

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
(-200 to -190) °C 0.29 °C (-190 to -80) °C 0.05 °C (-80 to 0) °C 0.06 °C (0 to 100) °C 0.07 °C		$\begin{array}{c} (-200 \text{ to } 0) \ ^{\circ}\text{C} \\ (0 \text{ to } 100) \ ^{\circ}\text{C} \\ (100 \text{ to } 300) \ ^{\circ}\text{C} \\ (300 \text{ to } 400) \ ^{\circ}\text{C} \\ (400 \text{ to } 630) \ ^{\circ}\text{C} \\ (630 \text{ to } 800) \ ^{\circ}\text{C} \\ (630 \text{ to } 800) \ ^{\circ}\text{C} \\ (630 \text{ to } 0) \ ^{\circ}\text{C} \\ (0 \text{ to } 100) \ ^{\circ}\text{C} \\ (0 \text{ to } 100) \ ^{\circ}\text{C} \\ (100 \text{ to } 300) \ ^{\circ}\text{C} \\ (300 \text{ to } 400) \ ^{\circ}\text{C} \\ (400 \text{ to } 630) \ ^{\circ}\text{C} \\ (400 \text{ to } 630) \ ^{\circ}\text{C} \\ (-200 \text{ to } -190) \ ^{\circ}\text{C} \\ (-200 \text{ to } -190) \ ^{\circ}\text{C} \\ (-190 \text{ to } -80) \ ^{\circ}\text{C} \\ (-190 \text{ to } -80) \ ^{\circ}\text{C} \\ (0 \text{ to } 100) \ ^{\circ}\text{C} \\ (100 \text{ to } 260) \ ^{\circ}\text{C} \\ (260 \text{ to } 300) \ ^{\circ}\text{C} \\ (300 \text{ to } 400) \ ^{\circ}\text{C} \\ (400 \text{ to } 600) \ ^{\circ}\text{C} \\ (260 \text{ to } 300) \ ^{\circ}\text{C} \\ (260 \text{ to } 300) \ ^{\circ}\text{C} \\ (260 \text{ to } 300) \ ^{\circ}\text{C} \\ (300 \text{ to } 400) \ ^{\circ}\text{C} \\ (400 \text{ to } 600) \ ^{\circ}\text{C} \\ (300 \text{ to } 400) \ ^{\circ}\text{C} \\ (400 \text{ to } 630) \ ^{\circ}\text{C} \\ (-200 \text{ to } -80) \ ^{\circ}\text{C} \\ (-200 \text{ to } -80) \ ^{\circ}\text{C} \\ (-200 \text{ to } -80) \ ^{\circ}\text{C} \\ (-80 \text{ to } 100) \ ^{\circ}\text{C} \\ (-80 \text{ to } 400) \ ^{\circ}\text{C} \\ (-80 \text{ to } 400) \ ^{\circ}\text{C} \\ (-80 \text{ to } 600) \ ^{\circ}$	$\begin{array}{c} 0.06 \ ^{\circ}\text{C} \\ 0.08 \ ^{\circ}\text{C} \\ 0.11 \ ^{\circ}\text{C} \\ 0.12 \ ^{\circ}\text{C} \\ 0.14 \ ^{\circ}\text{C} \\ 0.27 \ ^{\circ}\text{C} \\ \end{array}$	Comparison to Fluke 5520A Multi Product

This Scope of Accreditation, version 018, was last updated on: 03 July 2025 and is valid only when accompanied by the Certificate.

1899 L Street NW, Suite 1100-A, Washington, DC 20036 414-501-5494 www.anab.org

Page 47 of 70

ilac-MRA

'W

ANSI National Accreditation Board

В

Mundelein, IL

Mundelein, IL

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Electrical Simulation of RTD Indicators ¹	PT 385 1 000 Ω (-200 to 0) °C (0 to 100) °C (100 to 260) °C (260 to 300) °C (300 to 600) °C (600 to 630) °C PtNi 120 Ω (-80 to 100) °C (100 to 260) °C Cu 427 10 Ω (-100 to 260) °C	0.04 °C 0.05 °C 0.06 °C 0.07 °C 0.08 °C 0.27 °C 0.09 °C 0.16 °C 0.35 °C	Comparison to Fluke 5520A Multi Product Calibrator

Length – Dimensional Metrology

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Gage Blocks ²	(0.01 to 1) in (1 to 2) in 4 in	(1.4 + 1.3 <i>L</i>) μin (1 + 1.3 <i>L</i>) μin 9.4 μin	Comparison to Gage Blocks Gage Block Comparator
Gage Blocks ²	100 mm (125 to 500) mm	0.17 μm (0.06 + 0.000 6 <i>L</i>) μm	Comparison to Primary Master Gage Blocks
Indicators ^{1,2}	(0.000 1 to 6) in	(5+8 <i>L</i>) μin	Comparison to Horizontal Measuring Machine
Calipers ^{1,2}	Up to 60 in (60 to 80) in	(5+8 <i>L</i>) μin (410 + 2 <i>L</i>) μin	Comparison to Gage Blocks
Micrometers OD ^{1,2}	Up to 12 in (12 to 24) in	(5+8 <i>L</i>) μin (34 + 4.6 <i>L</i>) μin	Comparison to Gage
Anvil Flatness	Up to 1 in <i>D</i> (0 to 84) μin	4 μin	Blocks, Optical Parallels
Height Measuring Devices ^{1,2}	Up to 36 in (36 to 48) in	(45 + 2 <i>L</i>) μin (7 + 3 <i>L</i>) μin	Comparison to Gage Blocks
Grind Gages	Up to 100 mm	0.35 mm	Comparison to Digital Indicator
Coating Thickness Gages ^{1,2}	Up to 0.02 in	58 μin + 0.6 <i>R</i>	Comparison to Coating Thickness Standards

This Scope of Accreditation, version 018, was last updated on: 03 July 2025 and is valid only when accompanied by the Certificate.

Page 48 of 70

1899 L Street NW, Suite 1100-A, Washington, DC 20036 414-501-5494 www.anab.org

Length – Dimensional Metrology

Length – Dimensional Metro	Jiogy		Mundelein, 11
Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Coating Thickness Gage Standards	Up to 0.10 in	21 μin	Horizontal Measuring Comparison to Machine
External Diameter ^{1,2}	(0.000 1 to 12) in	(3+3L) µin	Comparison to Horizontal Measuring Machine
Internal Diameter ^{1,2}	(0.04 to 13) in	$(3 + 3L) \mu in$	Comparison to Horizontal Measuring Machine
Thread Rings (Adjustable) Pitch Diameter Tactile Fit (Set to Plug)	Up to 4 in	See footnote ⁵	Comparison to Thread Setting Plug
Thread Plugs ^{1,2} Pitch Diameter	Up to 8 in Pitch (0.2 to 5) mm	(87 + 1.9 <i>L</i>) μin	Comparison to Horizontal Measuring Machine
Major Diameter	Pitch 9 <mark>0 – 4 TPI</mark> Up to 4 in	(3.5 + 4.6 <i>L</i>) μin	Thread Measuring Wires
Optical Comparators ^{1,2}			Comparison to
Linear Accuracy	Up to 6 in 6 to 12 in	(43 + 11 <i>L</i>) μin (30 + 7.5 <i>L</i>) μin	Glass Scale
Magnification	(5 to 100) X	350 µin	Glass Scale (Sphere)
Surface Plates ^{1,2} Overall Flatness	Up to 238 in <i>DL</i>	(25 + 2.9L) µin	Comparison to Laser System
Local Area Flatness	Up to 238 in <i>DL</i>	34 µin	Repeat-O-Meter
Surface Finish Artifacts	Up to 500 µin	2.4 µin	Comparison to Profilometer, Master Patch
Profilometers ¹	Up to 500 µin	3.1 µin	Comparison to Master Patch
Optical Flats Parallelism Flatness	Up to 6 in <i>D</i> (0 to 80) μin	2.7 μin 3.5 μin	Comparison to Gage Block Comparator, Master Flat
CMMs ^{1,2} Linearity	(0 to 144) in	(25 + 2.4 <i>L</i>) μin	Comparison to Laser Measuring System
Volumetric Repeatability	(6 to 24) in (0.5 to 2) in	66 μin 45 μin	Ball Bar, CMM Sphere

This Scope of Accreditation, version 018, was last updated on: 03 July 2025 and is valid only when accompanied by the Certificate.

Page 49 of 70

1899 L Street NW, Suite 1100-A, Washington, DC 20036 414-501-5494 www.anab.org

'

Length – Dimensional Metrology

Mundelein, IL

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
VMMs ^{1,2}	Linearity	$(32 + 4.1L) \mu in$	Comparison to Glass Scales
Rulers and Pi Tapes	Up to 12 in	0.000 88 in	Comparison to Optical Slide w/ Indicator
Horizontal Measuring Systems ^{1,2}	Up to 8 in 8 to 60 in	$(6 + 1.7L) \mu in$ (3 + 2.5L) μin	Comparison to Gage Blocks
Protractors	(0 to 90)°	0.16°	Comparison to Sine Bar, Gage Blocks
Length Standards ²	(1 to 60) in	(3.4 + 3.5 <i>L</i>) μin	Comparison to Horizontal Measuring System
Micrometers - Inside ²	Up to 8 in 8 to 60 in	$(6 + 1.7L) \mu in$ (3 + 2.5L) μin	Comparison to Horizontal Measuring System

Mass and Mass Related

Mundelein, IL

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Force ¹ Source and Measure	(0.035 to 16) ozf (1 to 10) lbf (10 to 50) lbf (50 to 500) lbf	0.018 % of reading + 0.21 μozf 0.018 % of reading + 0.33 μlbf 0.018 % of reading + 9.3 mlbf 0.036 % of reading + 5.3 mlbf	Comparison to Dead Weight
Source and Measure	(500 to 1 000) lbf (1 000 to 10 000) lbf (10 to 100) klbf	0.05 % of reading 0.06 % of reading 0.06 % of reading	Comparison to Load Cells, Class AA
Force ¹ Source and Measure	(30 000 to 400 000) lbf	0.29 % of applied value	Comparison to Load Cells, Class A (compression only)
Pressure ¹	(10 to 17) psia	0.000 4 psi	Comparison to Pressure Calibrator
Pressure ¹	(-14.5 to -0.5) psi (1 to 16 000) psi	65 μpsi/psi 65 μpsi/psi	Comparison to Deadweight Tester

This Scope of Accreditation, version 018, was last updated on: 03 July 2025 and is valid only when accompanied by the Certificate.

Page 50 of 70

1899 L Street NW, Suite 1100-A, Washington, DC 20036 414-501-5494 www.anab.org

Mundelein, IL

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Torque Tools ¹	0.5 ozf·in to 200 ozf·in (5 to 50) lbf·in (50 to 400) lbf·in (400 to 1000) lbf·in (80 to 250) lbf·ft (250 to 600) lbf·ft (600 to 1 000) lbf·ft	0.56 % of reading 0.33 % of reading 0.36 % of reading 0.4 % of reading 0.28 % of reading 0.51 % of reading 0.75 % of reading	Comparison to Torque Tester
Scales and Balances ^{1,6}	Up to 5 mg (5 to 500) mg 500 mg to 5 g (5 to 10) g (10 to 20) g (20 to 50) g (50 to 100) g (100 to 250) g 250 g to 1.1 kg (1.1 to 6.1) kg (6.1 to 33) kg	0.005 mg 0.006 mg 0.007 mg 0.012 mg 0.014 mg 0.024 mg 0.086 mg 0.092 mg 1.4 mg 9 mg 90 mg	Comparison to OIML E2 Class 1 Weights
Scales and Balances ^{1,6}	(0.5 to 2 000) lb	0.01 % of reading	Comparison to Class 6 Weights
Indirect Verification of Microindentation Hardness Testers ¹ (Knoop and Vickers)	Repeatability under forces (gf): $100 \le HK \ge 500$ HV = 100	2.1 % of Reading 4.1 % of Reading	Indirect Verification to Test Blocks
Brinell Hardness Testers ¹ Repeatability	$500 \text{ kgf} \leq 100 \text{ HBW} \\ \geq 64 \text{ HBW} \\ 1 500 \text{ kgf} \\ \leq 257 \text{ HBW} \\ \geq 91 \text{ HBW} \\ 3 000 \text{ kgf} \\ \leq 587 \text{ HBW} \\ \geq 186 \text{ HBW} $	0.025 mm 0.025 mm 0.025 mm 0.03 mm 0.025 mm 0.025 mm	Indirect Verification to Test Blocks

This Scope of Accreditation, version 018, was last updated on: 03 July 2025 and is valid only when accompanied by the Certificate.

Page 51 of 70

1899 L Street NW, Suite 1100-A, Washington, DC 20036 414-501-5494 www.anab.org

Mundelein, IL

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
	HRA Low HRA Middle	0.69 HRA 0.62 HRA	
	HRA High	0.362 HRA	
Rockwell Hardness Testers ¹	HRBW Low HRBW Middle HRBW High	0.71 HRBW 0.53 HRBW 0.9 HRBW	Indirect Verification to Test Blocks
	HRC Low HRC Middle HRC High	0.54 HRC 0.7 HRC 0.38 HRC	

This Scope of Accreditation, version 018, was last updated on: 03 July 2025 and is valid only when accompanied by the Certificate.

Page 52 of 70

1899 L Street NW, Suite 1100-A, Washington, DC 20036 414-501-5494 <u>www.anab.org</u>

Mundelein, IL

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
	HREW Low HREW Middle HREW High	0.49 HREW 0.39 HREW 0.88 HREW	
	HRMW Low HRMW Middle HRMW High	0.65 HRMW 0.55 HRMW 0.65 HRMW	
	HR15N Low HR15N Middle HR15N High	0.69 HR15N 0.69 HR15N 0.36 HR15N	
	HR15TW Low HR15TW Middle HR15TW High	0.87 HR15TW 0.72 HR15TW 0.72 HR15TW	Indirect Verification to
Rockwell Hardness Testers ¹	HR30N Low HR30N Middle HR30N High	0.87 HR30N 0.91 HR30N 0.36 HR30N	Test Blocks
	HR30TW Low HR30TW Middle HR30TW High	0.54 HR30TW 0.72 HR30TW 0.39 HR30TW	
	HR45N Low HR45N Middle HR45N High	0.64 HR45N 1.2 HR45N 0.34 HR45N	
	HR45TW Low HR45TW Middle HR45TW High	0.92 HR45TW 0.92 HR45TW 0.61 HR45TW	
Durometers Spring Force			Full Direct Verification
Types A, B, E, O Types C, D, and DO Types OO, OOO, OOO-S	(1.3 to 8.05) N (4.445 to 44.5) N (0.294 to 1.932) N	0.023 N 0.06 N 0.002 N	Shore Durometer Calibrator Balance
Indenter Angle Indenter Length Indenter Radius	(20 to 40) ° (0.049 to 0.198) in (0.05 to 0.1) in	0.05 ° 220 μin 250 μin	VMM

This Scope of Accreditation, version 018, was last updated on: 03 July 2025 and is valid only when accompanied by the Certificate.

Page 53 of 70

ilac-MRA

1899 L Street NW, Suite 1100-A, Washington, DC 20036 414-501-5494

Thermodynamic

Mundelein, IL

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Temperature - Measure	(-200 to -20) °C (-20 to 120) °C (120 to 200) °C (200 to 300) °C (300 to 600) °C	0.006 2 °C 0.001 7 °C 0.023 °C 0.023 °C 0.024 °C	Comparison to Fluke 5699 SPRT Fluke 1590 Super Thermometer
Temperature – Source	(-20 to 120) °C (120 to 425) °C (425 to 660) °C	0.001 7 ℃ 0.038 ℃ 0.063 ℃	<i>Comparison to</i> SPRT Fluke 1590 Super Thermometer With liquid baths and Metrology Well
Radiation (Infrared) Thermometers	(50 to 100) °C (100 to 200) °C (200 to 250) °C (250 to 300) °C (300 to 400) °C (400 to 500) °C	0.8 ℃ 0.93 ℃ 0.96 ℃ 1 ℃ 1.1 ℃ 1.2 ℃	Comparison to Black Body Calibrator Monitored with a PRT $\mathcal{E} = 0.95, \lambda = (8 \text{ to } 14) \mu \text{m}$
Humidity Measure ¹	(10 to 90) %RH (95 to 98) %RH	1.1 %RH 2 %RH	Comparison to Humidity Indicator

DIMENSIONAL MEASUREMENT

2 Dimensional

Mundelein II

			Winnetein, IL
Specific Tests and / or Properties Measured	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method and/or Equipment
Non-contact	(6 x 8) in	(239 + 1.4 <i>L</i>) μin	Comparison to Vision System
Surface Finish Analysis	Up to 500 µin	2.4 µin	Comparison to Profilometer, Master Patch

This Scope of Accreditation, version 018, was last updated on: 03 July 2025 and is valid only when accompanied by the Certificate.

Page 54 of 70

1899 L Street NW, Suite 1100-A, Washington, DC 20036 414-501-5494 www.anab.org

3 Dimensional

Mundelein, IL

Dimensional			Mundelein,
Specific Tests and / or Properties Measured	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method and/or Equipment
Dimensional Inspection Contact	(16 x 18 x 14) in	$(209 + 1.2L) \mu in$	Comparison to Coordinate Measuring Machine
	Return to Site listing (top) <u>Go to Notes (bottom)</u>	

This Scope of Accreditation, version 018, was last updated on: 03 July 2025 and is valid only when accompanied by the Certificate.

Page 55 of 70

1899 L Street NW, Suite 1100-A, Washington, DC 20036 414-501-5494 <u>www.anab.org</u>

Services performed at satellite laboratory

2524 Alpine Road Eau Claire, WI 54703 715-214-1130 General Manager: Tyler Kampsula <u>tkampsula@martincalibration.com</u>

CALIBRATION AND DIMENSIONAL MEASUREMENT

CALIBRATION

Electrical – DC/Low Frequency

Eau Claire, WI

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
DC Voltage – Source ¹	Up to 330 mV 330 mV to 3.3 V (3.3 to 33) V	$\frac{21 \ \mu V/V}{11 \ \mu V/V} + 1 \ \mu V$ $\frac{11 \ \mu V/V}{13 \ \mu V/V} + 2 \ \mu V$	Comparison to 5522A
	(33 to 330) V (330 to 1 020) V	$\frac{18 \mu \text{V/V} + 150 \mu \text{V}}{18 \mu \text{V/V} + 1.5 \text{mV}}$	Multi Product Calibrator
DC Voltage – Measure ¹	Up to 100 mV 100 mV to 1 V (1 to 10) V	$\frac{12 \mu V/V}{10 \mu V/V} + 0.3 \mu V$ $\frac{10 \mu V/V}{10 \mu V/V} + 0.5 \mu V$	Comparison to Keysight 3458A Multimeter
	(10 to 100) V 100 V to 1 kV Up to 330 µA	$\frac{13 \mu V/V + 30 \mu V}{13 \mu V/V + 100 \mu V}$ $\frac{151 \mu A/A + 20 nA}{151 \mu A/A + 20 nA}$	
DC Current – Source ¹	330 µA to 3.3 mA (3.3 to 33) mA (33 to 330) mA 330 mA to 1.1 A (1.1 to 3) A (3 to 11) A (11 to 20) A	$101 \ \mu A/A + 20 \ nA$ $101 \ \mu A/A + 50 \ nA$ $101 \ \mu A/A + 250 \ nA$ $102 \ \mu A/A + 2.5 \ \mu A$ $201 \ \mu A/A + 40 \ \mu A$ $386 \ \mu A/A + 40 \ \mu A$ $504 \ \mu A/A + 0.5 \ mA$ $1 \ mA/A + 0.75 \ mA$	Comparison to 5522A Multi Product Calibrator
DC Current – Measure ¹	$(10 \text{ to } 100) \mu \text{A}$ $(10 \text{ to } 100) \mu \text{A}$ $100 \mu \text{A to } 1 \text{ mA}$ $(1 \text{ to } 10) \text{ mA}$ $(10 \text{ to } 100) \text{ mA}$ $100 \text{ mA to } 1 \text{ A}$	$29 \ \mu A/A + 0.8 \ nA$ $27 \ \mu A/A + 5 \ nA$ $28 \ \mu A/A + 50 \ nA$ $46 \ \mu A/A + 0.5 \ \mu A$ $121 \ \mu A/A + 10 \ \mu A$	Comparison to Keysight 3458A Multimeter

This Scope of Accreditation, version 018, was last updated on: 03 July 2025 and is valid only when accompanied by the Certificate.

Page 56 of 70

1899 L Street NW, Suite 1100-A, Washington, DC 20036 414-501-5494 <u>www.anab.org</u>

Eau Claire, WI

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
AC Voltage – Source	Up to 33 mV (10 to 45) Hz 45 Hz to 10 kHz (20 to 50) kHz (50 to 100) kHz (100 to 500) kHz (33 to 330) mV (10 to 45) Hz 45 Hz to 10 kHz (10 to 20) kHz (20 to 50) kHz (50 to 100) kHz (100 to 500) kHz (300 mV to 3.3 V (10 to 45) Hz 45 Hz to 10 kHz (10 to 20) kHz (20 to 50) kHz (50 to 100) kHz (50 to 100) kHz (50 to 100) kHz (100 to 500) kHz (3.3 to 33) V (10 to 45) Hz 45 Hz to 10 kHz (10 to 20) kHz (20 to 50) kHz (20 to 50) kHz (33 to 330) V 45 Hz to 1 kHz (1 to 10) kHz (20 to 50) kHz (50 to 100) kHz (33 to 330) V 45 Hz to 1 kHz (10 to 20) kHz (20 to 50) kHz (50 to 100) kHz (33 to 330) V 45 Hz to 1 kHz (10 to 20) kHz (20 to 50) kHz (33 to 330) V 45 Hz to 1 kHz (10 to 20) kHz (330 to 1020) V 45 Hz to 1 kHz (1 to 5) kHz	$806 \mu V/V + 6 \mu V$ $176 \mu V/V + 6 \mu V$ $220 \mu V/V + 6 \mu V$ $1 mV/V + 6 \mu V$ $3.5 mV/V + 12 \mu V$ $8 mV/V + 50 \mu V$ $302 \mu V/V + 8 \mu V$ $148 \mu V/V + 8 \mu V$ $163 \mu V/V + 8 \mu V$ $353 \mu V/V + 8 \mu V$ $804 \mu V/V + 32 \mu V$ $2 mV/V + 70 \mu V$ $302 \mu V/V + 50 \mu V$ $153 \mu V/V + 60 \mu V$ $302 \mu V/V + 60 \mu V$ $302 \mu V/V + 50 \mu V$ $703 \mu V/V + 125 \mu V$ $2.4 mV/V + 0.6 m V$ $302 \mu V/V + 600 \mu V$ $353 \mu V/V + 1.6 m V$ $314 \mu V/V + 2 m V$ $302 \mu V/V + 10 m V$ $302 \mu V/V + 10 m V$	Comparison to 5522A Multi Product Calibrator

This Scope of Accreditation, version 018, was last updated on: 03 July 2025 and is valid only when accompanied by the Certificate.

Page 57 of 70

1899 L Street NW, Suite 1100-A, Washington, DC 20036 414-501-5494 www.anab.org

'

Eau Claire, WI

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
AC Voltage – Measure	Up to 10 mV (1 to 40) Hz 40 Hz to 1 kHz (1 to 20) kHz (20 to 50) kHz (50 to 100) kHz (100 to 300) kHz (100 to 300) kHz (10 to 100) mV (1 to 40) Hz 40 Hz to 1 kHz (1 to 20) kHz (20 to 50) kHz (50 to 100) kHz (100 to 300) kHz 300 kHz to 1 MHz (1 to 2) MHz (1 to 20) kHz (20 to 50) kHz (20 to 50) kHz (50 to 100) kHz (1 to 20) kHz (50 to 100) kHz (1 to 2) MHz (1 to 2) MHz (1 to 2) MHz (1 to 10) V (1 to 40) Hz 40 Hz to 1 MHz (1 to 2) MHz (1 to 10) V (1 to 40) Hz 40 Hz to 1 kHz (1 to 20) kHz (20 to 50) kHz (1 to 20) kHz (20 to 50) kHz (1 to 10) V (1 to 40) Hz 40 Hz to 1 kHz (1 to 20) kHz (20 to 50) kHz (20 to 50) kHz (20 to 50) kHz (20 to 50) kHz (1 to 20) k	$300 \mu V/V + 3 \mu V$ $219 \mu V/V + 1.1 \mu V$ $324 \mu V/V + 1.1 \mu V$ $1 mV/V + 6 \mu V$ $5.1 mV/V + 1.1 \mu V$ $41 mV/V + 2 \mu V$ $70 \mu V/V + 4 \mu V$ $83.8 \mu V/V + 2 \mu V$ $157 \mu V/V + 2 \mu V$ $308 \mu V/V + 2 \mu V$ $308 \mu V/V + 2 \mu V$ $308 \mu V/V + 2 \mu V$ $31 mV/V + 10 \mu V$ $10 mV/V + 10 \mu V$ $10 mV/V + 10 \mu V$ $15 mV/V + 20 \mu V$ $327 \mu V/V + 0.1 m V$ $10 mV/V + 0.1 m V$ $15 mV/V + 0.1 m V$ $15 mV/V + 0.1 m V$ $154 \mu V/V + 200 \mu V$ $314 \mu V/V + 200 \mu V$ $324 \mu V/V + 200 \mu V$ $316 \mu V/V + 1 m V$ $10 mV/V + 1 m V$ $10 mV/V + 1 mV$	Comparison to Keysight 3458A Multimeter

This Scope of Accreditation, version 018, was last updated on: 03 July 2025 and is valid only when accompanied by the Certificate.

Page 58 of 70

1899 L Street NW, Suite 1100-A, Washington, DC 20036 414-501-5494 www.anab.org

Eau Claire, WI

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
AC Voltage – Measure	(10 to 100) V (1 to 40) Hz 40 Hz to 1 kHz (1 to 20) kHz (20 to 50) kHz (50 to 100) kHz (100 to 300) kHz 300 kHz to 1 MHz (100 to 1 000) V (1 to 40) Hz 40 Hz to 1 kHz (1 to 20) kHz (20 to 50) kHz (50 to 100) kHz	$200 \mu V/V + 4 mV$ $205 \mu V/V + 2 mV$ $215 \mu V/V + 2 mV$ $358 \mu V/V + 2 mV$ 1.2 mV/V + 2 mV 4 mV/V + 2 mV 15 mV/V + 10 mV $400 \mu V/V + 40 mV$ $400 \mu V/V + 20 mV$ $600 \mu V/V + 20 mV$ 1.2 mV/V + 20 mV 3 mV/V + 20 mV	Comparison to Keysight 3458A Multimeter
AC Current – Measure	Up to 100 μ A (10 to 20) Hz (20 to 45) Hz (45 to 100) Hz 100 Hz to 1 kHz 100 μ A to 1 mA (10 to 20) Hz (20 to 45) Hz (45 to 100) Hz 100 Hz to 5 kHz (5 to 20) kHz (50 to 100) kHz (1 to 10) mA (10 to 20) Hz (20 to 45) Hz (20 to 45) Hz (20 to 45) Hz (45 to 100) Hz 100 Hz to 5 kHz (5 to 20) kHz	$4 \text{ mA/A} + 30 \text{ nA}$ $1.5 \text{ mA/A} + 30 \text{ nA}$ $605 \mu \text{A/A} + 30 \text{ nA}$ $610 \mu \text{A/A} + 30 \text{ nA}$ $610 \mu \text{A/A} + 30 \text{ nA}$ $4 \text{ mA/A} + 0.2 \mu \text{A}$ $1.5 \text{ mA/A} + 0.2 \mu \text{A}$ $605 \mu \text{A/A} + 0.2 \mu \text{A}$ $325 \mu \text{A/A} + 0.2 \mu \text{A}$ $605 \mu \text{A/A} + 0.2 \mu \text{A}$ $605 \mu \text{A/A} + 0.2 \mu \text{A}$ $4 \text{ mA/A} + 0.4 \mu \text{A}$ $5.5 \text{ mA/A} + 1.5 \mu \text{A}$ $4 \text{ mA/A} + 2 \mu \text{A}$ $1.5 \text{ mA/A} + 2 \mu \text{A}$ $605 \mu \text{A/A} + 2 \mu \text{A}$ $605 \mu \text{A/A} + 2 \mu \text{A}$ $605 \mu \text{A/A} + 15 \mu \text{A}$	Comparison to Keysight 3458A Multimeter

This Scope of Accreditation, version 018, was last updated on: 03 July 2025 and is valid only when accompanied by the Certificate.

Page 59 of 70

1899 L Street NW, Suite 1100-A, Washington, DC 20036 414-501-5494 www.anab.org

Eau Claire, WI

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
	(10 to 100) mA		
	(10 to 20) Hz	4 m <mark>A/A</mark> + 20 μA	
	(20 to 45) Hz	1.5 mA/A + 20 μA	
	(45 to 100) Hz	605 <mark>µА/А</mark> + 20 µА	
	100 Hz to 5 kHz	3 <mark>25 μΑ/Α</mark> + 20 μΑ	
	(5 to 20) kHz	605 μA/A + 20 μA	
	(20 to 50) kHz	4 mA/A + 40 μA	Comparison to Keysight
AC Current – Measure	(50 to 100) kHz	5.5 mA/A + 150 μA	3458A Multimeter
	100 mA to 1 A		3438A Multimeter
	(10 to 20) Hz	4 mA/A + 0.2 mA	
	(20 to 45) Hz	1.6 mA/A + 0.2 mA	
	(45 to 100) Hz	805 μA/A <mark>+</mark> 0.2 mA	
	100 Hz to 5 kHz	1 mA/A + 0.2 mA	
	(5 to 20) kHz	3 mA/A + 0.2 mA	
	(20 to <mark>50) kHz</mark>	<u>10 mA/A +</u> 0.4 mA	
	(29 to 330) µA		
	(10 to 20) Hz	$2 \text{ mA/A} + 0.1 \mu \text{A}$	
	(20 to 45) Hz	$1.5 \text{ mA/A} + 0.1 \mu \text{A}$	
	45 Hz to 1 kHz	$1.3 \text{ mA/A} + 0.1 \mu \text{A}$	
	(1 to 5) kHz	$3 \text{ mA/A} + 0.15 \mu\text{A}$	
	(5 to 10) kHz	$8 \text{ mA/A} + 0.2 \mu \text{A}$	
	(10 to 30) kHz	16 mA/A + 0.4 µA	
	(0.33 to 3.3) mA		
	(10 to 20) Hz	$2 \text{ mA/A} + 0.15 \mu\text{A}$	
	(20 to 45) Hz	$1.3 \text{ mA/A} + 0.15 \mu \text{A}$	Comparison to 5522A
AC Current – Source	45 Hz to 1 kHz	$1 \text{ mA/A} + 0.15 \mu\text{A}$	Multi Product Calibrator
	(1 to 5) kHz	$2 \text{ mA/A} + 0.2 \mu \text{A}$	With Troduct Canorato
	(5 to 10) kHz	$5.1 \text{ mA/A} + 0.3 \mu\text{A}$	
	(10 to 30) kHz	$10 \text{ mA/A} + 0.6 \mu\text{A}$	
	(3.3 to 33) mA		
	(10 to 20) Hz	$1.8 \text{ mA/A} + 2 \mu \text{A}$	
	(20 to 45) Hz	910 μ A/A + 2 μ A	
	45 Hz to 1 kHz	$423 \ \mu A/A + 2 \ \mu A$	
	(1 to 5) kHz	$813 \mu A/A + 2 \mu A$	
	(5 to 10) kHz	$2 \text{ mA/A} + 3 \mu \text{A}$	
	(10 to 30) kHz	$4.1 \text{ mA/A} + 4 \mu \text{A}$	

This Scope of Accreditation, version 018, was last updated on: 03 July 2025 and is valid only when accompanied by the Certificate.

Page 60 of 70

1899 L Street NW, Suite 1100-A, Washington, DC 20036 414-501-5494 www.anab.org

W

Eau Claire, WI

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
	(33 to 330) mA	1.8 - 1.6 + 20 + 4	
	(10 to 20) Hz (20 to 45) Hz	$1.8 \text{ mA/A} + 20 \mu \text{A}$	
	45 Hz to 1 kHz	909 $\mu A/A + 20 \mu A$	
	(1 to 5) kHz	417 μΑ/Α + 20 μΑ 1 mΑ/Α + 50 μΑ	
	(1 to 3) kHz (5 to 10) kHz	$2 \text{ mA/A} + 30 \mu\text{A}$	
	(10 to 30) kHz	$4.1 \text{ mA/A} + 200 \mu\text{A}$	
	(0.33 to 1.1) A	4.1 $\text{IIIA/A} + 200 \mu\text{A}$	
	(0.55 to 1.1) A (10 to 45) Hz	1.8 mA/A + 100 μA	
	45 Hz to 1 kHz	$512 \mu A/A + 100 \mu A$	
	(1 to 5) kHz	$\frac{512}{6}$ mA/A + 1 mA	
	(5 to 10) kHz	25 mA/A + 5 mA	
AC Current – Source	(1.1 to 3) A	25 IIIA/A + 5 IIIA	Comparison to 5522A
AC Current – Source	(1.1 to 3) A (10 to 45) Hz	1.8 mA/A + 100 μA	Multi Product Calibrator
	45 Hz to 1 kHz	$664 \mu A/A + 100 \mu A$	
	(1 to 5) kHz	6 mA/A + 1 mA	
	(5 to 10) kHz	25 mA/A + 5 mA	
	(3 to 11) A		
	(45 to 100) Hz	1.8 mA/A + 100 μA	
	100 Hz to 1 kHz	$664 \mu A/A + 100 \mu A$	
	(1 to 5) kHz	6 mA/A + 1 mA	
	(11 to 20.5) A		
	(45 to 100) Hz	1.2 mA/A + 5 mA	
	100 Hz to 1 kHz	1.5 mA/A + 5 mA	
	(1 to 5) kHz	30 mA/A + 5 mA	
	$100 \ \mu\Omega$ to $10 \ \Omega$	20 μΩ/Ω + 50 μΩ	
	(10 to 100) Ω	$17 $ μ $\Omega/\Omega + 5 $ μ Ω	
	100Ω to $1 k\Omega$	$15 \mu \Omega / \Omega + 500 \mu \Omega$	
Resistance – Measure ¹	(1 to 10) kΩ	$15 \ \mu\Omega/\Omega + 5 \ m\Omega$	Comparison to Keysight
	(10 to 100) $k\Omega$	$15 \ \mu\Omega/\Omega + 50 \ m\Omega$	3458A Multimeter
	$100 \text{ k}\Omega$ to $1 \text{ M}\Omega$	$\dot{20} \mu\Omega/\Omega + 2 \Omega$	
	(1 to 10) MΩ	$83 \mu\Omega/\Omega + 100 \Omega$	
	(10 to 100) MΩ	$820 \ \mu\Omega/\Omega + 1 \ k\Omega$	

This Scope of Accreditation, version 018, was last updated on: 03 July 2025 and is valid only when accompanied by the Certificate.

Page 61 of 70

1899 L Street NW, Suite 1100-A, Washington, DC 20036 414-501-5494 www.anab.org

Eau Claire, WI

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
	Up to 11 Ω	<mark>36</mark> μΩ/Ω	
	(11 to 33) Ω	<mark>26 μ</mark> Ω/Ω	
	(33 to 110) Ω	23 μΩ/Ω	
	(110 to 330) Ω	<u>23 μ</u> Ω/Ω	
	330 Ω to 1.1 k Ω	<u>23 μΩ/Ω</u>	
	$(1.1 \text{ to } 3.3) \text{ k}\Omega$	23 μ <mark>Ω/Ω</mark>	
	(3.3 to 11) kΩ	23 μΩ/Ω	
	(11 to 33) kΩ	<u>23</u> μΩ/Ω	Comparison to 5522A
Resistance - Source ¹	(33 to 110) kΩ	<mark>24</mark> μΩ/Ω	Comparison to 5522A Multi Product Calibrator
	(110 to 330) $k\Omega$	26 μΩ/Ω	White Froduct Cambrator
	330 k Ω to 1.1 M Ω	26 μ Ω /Ω	
	$(1.1 \text{ to } 3.3) \text{ M}\Omega$	42 μ <mark>Ω</mark> /Ω	
	(3.3 to 11) MΩ	110 μ Ω /Ω	
	(11 to 33) MΩ	<u>201 μΩ/Ω</u>	
	$(33 \text{ to } 110) \text{ M}\Omega$	400 μΩ/Ω	
	(110 to 330) M Ω	2.5 mΩ/Ω	
	$330 \text{ M}\Omega \text{ to } 1.1 \text{ G}\Omega$	12 mΩ/Ω	
	10 Hz to 10 kHz		
	(220 to 400) pF	6.4 mF/F + 10 pF	Gamma 1, 5522A
Capacitance – Source	(0.4 to 1.1) nF	5.3 mF/F + 10 pF	Comparison to 5522A Multi Product Calibrator
•	10 Hz to 3 kHz		
	(1.1 to 3.3) nF	5.1 mF/F + 10 pF	
	10 Hz to 1 kHz		
	(3.3 to 11) nF	2.6 mF/F + 10 pF	
	(11 to 33) nF	2.6 mF/F + 100 pF	
	(33 to 110) nF	2.6 mF/F + 100 pF	
	(110 to 330) nF	2.6 mF/F + 300 pF	
	(10 to 600) Hz		
	(0.33 to 1.1) µF	2.6 mF/F + 1 nF	
	(10 to 300) Hz		Gamma 1, 5522A
Capacitance – Source	(1.1 to 3.3) µF	2.6 mF/F + 3 nF	Comparison to 5522A
	(10 to 150) Hz		Multi Product Calibrator
	(3.3 to 11) µF	2.6 mF/F + 10 nF	
	(10 to 120) Hz		
	(11 to 33) µF	4.1 mF/F + 30 nF	
	(10 to 80) Hz		
	(33 to 110) μF	$4.7 \text{ mF/F} + 0.1 \mu\text{F}$	
	(0 to 50) Hz		
	(110 to 330) µF	4.6 mF/F + 0.3 μF	

This Scope of Accreditation, version 018, was last updated on: 03 July 2025 and is valid only when accompanied by the Certificate.

ilac-MRA

В

W

ANSI National Accreditation Board

1899 L Street NW, Suite 1100-A, Washington, DC 20036 414-501-5494 www.anab.org

Page 62 of 70

Eau Claire, WI

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Capacitance – Source	(0 to 20) Hz (0.33 to 1.1) mF (0 to 6) Hz (1.1 to 3.3) mF (0 to 2) Hz (3.3 to 11) mF (0 to 0.6) Hz (11 to 33) mF (0 to 0.2) Hz (33 to 110) mF	4.6 mF/F + 1 μF 4.5 mF/F + 3 μF 4.5 mF/F + 10 μF 7.5 mF/F + 30 μF 11 mF/F + 100 μF	Comparison to 5522A Multi Product Calibrator
Electrical Simulation of Thermocouple Indicators ¹	Type B (600 to 800) °C (800 to 1 000) °C (1 000 to 1 550) °C (1 550 to 1 820) °C Type C (0 to 150) °C (150 to 650) °C (650 to 1 000) °C (1 000 to 1 800) °C (1 000 to 1 800) °C (1 800 to 2 316) °C (1 800 to 2 316) °C (-250 to -100) °C (-100 to -25) °C (-25 to 350) °C (650 to 1 000) °C (500 to 1 000) °C (-30 to 150) °C (-30 to 1200) °C Type K (-200 to -100) °C (-100 to -25) °C (-25 to 120) °C (-25 to 120) °C (120 to 1 000) °C (1 000 to 1 372) °C	$\begin{array}{c} 0.44 \ ^{\circ}\text{C} \\ 0.34 \ ^{\circ}\text{C} \\ 0.33 \ ^{\circ}\text{C} \\ 0.33 \ ^{\circ}\text{C} \\ 0.26 \ ^{\circ}\text{C} \\ 0.26 \ ^{\circ}\text{C} \\ 0.31 \ ^{\circ}\text{C} \\ 0.5 \ ^{\circ}\text{C} \\ 0.84 \ ^{\circ}\text{C} \\ \end{array}$	Comparison to 5522A Multi Product Calibrator

This Scope of Accreditation, version 018, was last updated on: 03 July 2025 and is valid only when accompanied by the Certificate.

Page 63 of 70

1899 L Street NW, Suite 1100-A, Washington, DC 20036 414-501-5494 www.anab.org

Eau Claire, WI

Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Type L (-200 to -100) °C (-100 to 800) °C (800 to 900) °C Type N (-200 to -100) °C (-100 to - 25) °C (-25 to 120) °C (120 to 410) °C (410 to 1 300) °C (410 to 1 300) °C (250 to 400) °C (400 to 1 000) °C (1 000 to 1 767) °C Type S (0 to 250) °C (250 to 400) °C (400 to 1 000) °C (400 to 1 000) °C (1 000 to 1 767) °C Type T (-250 to -150) °C (0 to 120) °C (120 to 400) °C	$\begin{array}{c} 0.37 \ ^{\circ}\text{C} \\ 0.26 \ ^{\circ}\text{C} \\ 0.17 \ ^{\circ}\text{C} \\ 0.22 \ ^{\circ}\text{C} \\ 0.19 \ ^{\circ}\text{C} \\ 0.27 \ ^{\circ}\text{C} \\ 0.27 \ ^{\circ}\text{C} \\ 0.27 \ ^{\circ}\text{C} \\ 0.35 \ ^{\circ}\text{C} \\ 0.35 \ ^{\circ}\text{C} \\ 0.33 \ ^{\circ}\text{C} \\ 0.4 \ ^{\circ}\text{C} \\ 0.47 \ ^{\circ}\text{C} \\ 0.36 \ ^{\circ}\text{C} \\ 0.37 \ ^{\circ}\text{C} \\ 0.46 \ ^{\circ}\text{C} \\ 0.63 \ ^{\circ}\text{C} \\ 0.24 \ ^{\circ}\text{C} \\ 0.16 \ ^{\circ}\text{C} \\ 0.14 \ ^{\circ}\text{C} \\ 0.14 \ ^{\circ}\text{C} \\ 0.56 \ ^{\circ}\text{C} \\ \end{array}$	Comparison to 5522A Multi Product Calibrator
$\begin{array}{c c} (0 \text{ to } 600) \ ^{\circ}\text{C} \\ \hline \text{Pt } 385, 100 \ \Omega \\ (-200 \text{ to } -80) \ ^{\circ}\text{C} \\ (-80 \text{ to } 0) \ ^{\circ}\text{C} \\ (0 \text{ to } 100) \ ^{\circ}\text{C} \\ (100 \text{ to } 300) \ ^{\circ}\text{C} \\ (300 \text{ to } 400) \ ^{\circ}\text{C} \\ (400 \text{ to } 630) \ ^{\circ}\text{C} \end{array}$	0.27 °C 0.05 °C 0.05 °C 0.07 °C 0.09 °C 0.1 °C 0.12 °C	Comparison to 5522A Multi Product Calibrator
	Type L (-200 to -100) °C (-100 to 800) °C (800 to 900) °C Type N (-200 to -100) °C (-100 to - 25) °C (-25 to 120) °C (120 to 410) °C (410 to 1 300) °C (410 to 1 300) °C (250 to 400) °C (400 to 1 000) °C (1 000 to 1 767) °C Type S (0 to 250) °C (250 to 400) °C (400 to 1 000) °C (1 000 to 1 767) °C Type T (-250 to -150) °C (-150 to 0) °C (0 to 120) °C (120 to 400) °C (120 to 400) °C (0 to 120) °C (120 to 400) °C (120 to 400) °C Pt 385, 100 Ω (-200 to -80) °C (0 to 100) °C (0 to 100) °C (100 to 300) °C	KangeMeasurement (+/-)Type L (-200 to -100) °C $0.37 °C$ $0.26 °C(100 to 800) °C0.26 °C(800 to 900) °C(-200 to -100) °C0.4 °C(-100 to - 25) °C(-200 to -100) °C0.4 °C(-100 to - 25) °C(-25 to 120) °C0.19 °C(120 to 410) °C(-25 to 120) °C0.19 °C(120 to 410) °C(0 to 250) °C0.57 °C0.27 °CType R(0 to 250) °C0.57 °C0.33 °C(1 000 to 1 767) °C0.4 °CType S(0 to 250) °C0.4 °C(250 to 400) °C0.36 °C(400 to 1 000) °C(0 to 250) °C0.4 °CType S(0 to 250) °C0.4 °C(1 000 to 1 767) °C0.4 °CType T(-250 to -150) °C0.63 °C(-150 to 0) °C(-150 to 0) °C0.24 °C0.16 °C(120 to 400) °C0.16 °C0.27 °CType U(-200 to 0) °C0.56 °C0.27 °CPt 385, 100 \Omega0.05 °C(-80 to 0) °C(-200 to -80) °C0.05 °C(0 to 100) °C(-200 to -80) °C0.05 °C(-80 to 0) °C(-200 to -80) °C0.05 °C(-80 to 0) °C(-100 to 300) °C0.07 °C(100 to 300) °C0.07 °C(100 to 300) °C0.09 °C$

This Scope of Accreditation, version 018, was last updated on: 03 July 2025 and is valid only when accompanied by the Certificate.

Page 64 of 70

1899 L Street NW, Suite 1100-A, Washington, DC 20036 414-501-5494 www.anab.org

Eau Claire, WI

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Electrical Simulation of RTD Indicators ¹	Pt 3926, 100 Ω (-200 to -80) °C (-80 to 0) °C (0 to 100) °C (100 to 300) °C (300 to 400) °C (400 to 630) °C Pt 3916, 100 Ω (-200 to -190) °C (-190 to -80) °C (-190 to -80) °C (0 to 100) °C (100 to 260) °C (260 to 300) °C (300 to 400) °C (400 to 600) °C (600 to 630) °C (-200 to -80) °C (-80 to 0) °C (0 to 100) °C (100 to 260) °C (260 to 300) °C (400 to 600) °C (400 to 600) °C (600 to 630) °C (-200 to -80) °C (-200 to -8	$\begin{array}{c} 0.05 \ ^{\circ}\text{C} \\ 0.05 \ ^{\circ}\text{C} \\ 0.07 \ ^{\circ}\text{C} \\ 0.09 \ ^{\circ}\text{C} \\ 0.10 \ ^{\circ}\text{C} \\ 0.12 \ ^{\circ}\text{C} \\ 0.04 \ ^{\circ}\text{C} \\ 0.05 \ ^{\circ}\text{C} \\ 0.06 \ ^{\circ}\text{C} \\ 0.07 \ ^{\circ}\text{C} \\ 0.08 \ ^{\circ}\text{C} \\ 0.09 \ ^{\circ}\text{C} \\ 0.11 \ ^{\circ}\text{C} \\ 0.23 \ ^{\circ}\text{C} \\ 0.04 \ ^{\circ}\text{C} \\ 0.04 \ ^{\circ}\text{C} \\ 0.04 \ ^{\circ}\text{C} \\ 0.04 \ ^{\circ}\text{C} \\ 0.12 \ ^{\circ}\text{C} \\ 0.12 \ ^{\circ}\text{C} \\ 0.13 \ ^{\circ}\text{C} \\ 0.14 \ ^{\circ}\text{C} \\ 0.14 \ ^{\circ}\text{C} \\ 0.16 \ ^{\circ}\text{C} \\ 0.05 \ ^{\circ}\text{C} \\ 0.06 \ ^{\circ}\text{C} \\ 0.08 \ ^{\circ}\text{C} \\ 0.08 \ ^{\circ}\text{C} \\ 0.08 \ ^{\circ}\text{C} \\ 0.08 \ ^{\circ}\text{C} \\ 0.09 \ ^{\circ}\text{C} \\ 0.011 \ ^{\circ}\text{C} \ 0.011 \ ^{\circ}\text{C} \\ 0.011 \ ^{\circ}\text{C} \ 0.011 \ ^{\circ}\text{C} \ 0.011 \ ^{\circ}\text{C} \ 0.011 \ ^{\circ}\text{C} \ 0.011 \ ^{$	Comparison to 5522A Multi Product Calibrator

This Scope of Accreditation, version 018, was last updated on: 03 July 2025 and is valid only when accompanied by the Certificate.

Page 65 of 70

1899 L Street NW, Suite 1100-A, Washington, DC 20036 414-501-5494 www.anab.org

Eau Claire, WI

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Electrical Simulation of RTD Indicators ¹	Pt 385, 1 000 Ω (-200 to -80) °C (-80 to 0) °C (0 to 100) °C (100 to 260) °C (260 to 300) °C (300 to 400) °C (400 to 600) °C (600 to 630) °C PtNi 385, 120 Ω (Ni120) (-80 to 0) °C (0 to 100) °C (100 to 260) °C Cu 427, 10 Ω (100 to 260) °C	0.03 °C 0.03 °C 0.04 °C 0.05 °C 0.06 °C 0.07 °C 0.23 °C 0.08 °C 0.08 °C 0.14 °C 0.3 °C	Comparison to 5522A Multi Product Calibrator

Length – Dimensional Metrology

Eau Claire, WI

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Indicators ^{1,2}	(0.000 1 to 6) in	(8+3 <i>L</i>) μin	Comparison to Horizontal Measuring Machine
Calipers ^{1,2}	Up to 60 in (60 to 80) in	(5+8 <i>L</i>) μin (410 + 2 <i>L</i>) μin	Comparison to Gage Blocks
Micrometers OD ^{1,2} Length	Up to 12 in (12 to 24) in	(5+8 <i>L</i>) μin (34 + 4.6 <i>L</i>) μin	Comparison to Gage Blocks
Anvil Flatness	Up to 1 in <i>D</i> (0 to 84) μin	4 µin	Optical Parallels
Height Measuring Devices ^{1,2}	Up to 36 in (36 to 48) in	(45 + 2 <i>L</i>) μin (7 + 3L) μin	Comparison to Gage Blocks
External Diameter ^{1,2}	(0.000 1 to 6) in	(8+3L) µin	Comparison to Horizontal Measuring Machine
Internal Diameter ^{1,2}	(0.04 to 13) in	(8+3 <i>L</i>) µin	Comparison to Horizontal Measuring Machine

This Scope of Accreditation, version 018, was last updated on: 03 July 2025 and is valid only when accompanied by the Certificate.

Page 66 of 70

1899 L Street NW, Suite 1100-A, Washington, DC 20036 414-501-5494 <u>www.anab.org</u>

Length – Dimensional Metrology

Eau Claire, WI

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Thread Plugs ^{1,2} Pitch Diameter	Up to 8 in Pitch (0.2 to 5) mm	(87 + 1.9 <i>L</i>) μin	Comparison to Horizontal Measuring Machine
Major Diameter	Pitch 90 – 4 TPI Up to 4 in	(8+3 <i>L</i>) μin	Thread Measuring Wires
Thread Rings (Adjustable) Pitch Diameter Tactile Fit (Set to Plug)	Up to 4 in	See footnote ⁵	Comparison to Thread Setting Plug
Optical Comparators ^{1,2} Linear Accuracy	Up to 6 in 6 to 12 in	(43 + 11 <i>L</i>) μin (30 + 7.5 <i>L</i>) μin	Comparison to Glass Scale
Magnification	5X to 100X	350 μin	Glass Scale (Sphere)
Surface Plates ^{1,2} Overall Flatness	Up to 2 <mark>38 in<i>DL</i></mark>	(25 + 2.9 <i>L</i>) μin	Comparison to Laser System
Local Area Flatness	Up to 238 in <i>DL</i>	34 µin	Repeat-O-Meter
CMMs ^{1,2}	(0 to 144) in	(25 + 2.4L) µin	Comparison to Laser Measuring System
VMMs ^{1,2}	Up to 6 in	(32 + 4.1 <i>L</i>) μin	Comparison to Glass Scales
Horizontal Measuring Systems ^{1,2}	Up to 8 in of Travel (8 to 60) in	(6 + 1.7 <i>L</i>) μin (3 + 2.5 <i>L</i>) μin	Comparison to Gage Blocks
Feeler/Thickness Gages ²	Up to 0.2 in	$(4.3 + 3L) \mu in$	Comparison to Horizontal Measuring System
Indicator Calibrator ² Linearity	Up to 6 in	$60 \mu in + 0.6R$	Comparison to Horizontal Measuring System
Groove Micrometers ²	Up to 12 in	(44 + 2.6 <i>L</i>) μin+ 0.6 <i>R</i>	Comparison to Gage Blocks
Microscopes, Stereo Reticle Linearity	Up to 2 in	870 µin	Comparison to Stage Micrometer
Microscopes – Toolmakers ² Scale Linearity	Up to 4 in	(774 + 70 <i>L</i>) µin + 0.6 <i>R</i>	Comparison to Stage Micrometer
Length Standards ²	(1 to 60) in	(3.4 + 3.5 <i>L</i>) μin	Comparison to Horizontal Measuring System

This Scope of Accreditation, version 018, was last updated on: 03 July 2025 and is valid only when accompanied by the Certificate.

Page 67 of 70

1899 L Street NW, Suite 1100-A, Washington, DC 20036 414-501-5494 www.anab.org

'

Length – Dimensional Metrology

Eau Claire, WI

Eau Claire, WI

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Micrometers – Inside ²	Up to 8 in 8 to 60 in	$(6 + 1.7L) \mu in$ (3 + 2.5L) μin	Comparison to Horizontal Measuring System
Parallels ² Steel Granite	Up to 18 in	(96.3 + 1.8 <i>L</i>) μin (48.6 + 0.7 <i>L</i>) μin	Comparison to Electronic Amplifier with Probe, Surface Plate
Thickness Gages ² Dial Digital	Up to 1 in	410 μin + 0.6 <i>R</i> 44 μin+ 0.6 <i>R</i>	Comparison to Gage Blocks
Thread Micrometers ² (Screw Thread, Pitch Point) Linearity Anvil Wear	Up to 12 in	(44 + 2.6 <i>L</i>) μin + 0.6 <i>R</i> 690 μin	Comparison to Gage Blocks Thread Setting Plug

Mass and Mass Related

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Force ¹ Source	(0.035 to 16) ozf (1 to 10) lbf (10 to 50) lbf (50 to 500) lbf	0.018 % of reading + 0.21 μozf 0.018 % of reading + 0.33 μlbf 0.018 % of reading + 9.3 mlbf 0.036 % of reading + 5.3 mlbf	Comparison to Dead Weight
Pressure ¹	$\begin{array}{c} (-15 \text{ to } 30) \text{ psig} \\ (0 \text{ to } 1) \text{ inH}_2\text{O} \\ (0.036 \text{ to } 1) \text{ psig} \\ (0 \text{ to } 100) \text{ psia} \\ (100 \text{ to } 300) \text{ psig} \\ (300 \text{ to } 1 \text{ 000}) \text{ psig} \\ (1 \text{ 000 to } 10 \text{ 000}) \text{ psig} \end{array}$	19 mpsi 0.003 5 inH ₂ O 1.3 mpsi 0.07 psi 0.12 psi 0.4 psi 2.4 psi	Comparison to Pressure Calibrator
Torque Tools ¹	(5 to 50) lbf·in (50 to 400) lbf·in (400 to 1000) lbf·in (80 to 250) lbf·ft (250 to 600) lbf·ft (600 to 2 000) lbf·ft	0.33 % of reading 0.36 % of reading 0.4 % of reading 0.28 % of reading 0.51 % of reading 0.75 % of reading	Comparison to Torque Tester
Torque Transducers ¹	0.5 ozf·in to 1 000 lbf·ft	0.08 % of reading	Comparison to Dead Weight Torque Arms

This Scope of Accreditation, version 018, was last updated on: 03 July 2025 and is valid only when accompanied by the Certificate.

1899 L Street NW, Suite 1100-A, Washington, DC 20036 414-501-5494 www.anab.org

Eau Claire, WI

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Scales and Balances ^{1,6}	(0 to 500) mg 500 mg to 5 g (5 to 10) g (10 to 30) g (30 to 50) g (50 to 100) g (100 to 200) g (200 to 300) g 300 g to 1 kg (1 to 2) kg (2 to 3) kg	0.01 mg 0.034 mg 0.05 mg 0.074 mg 0.12 mg 0.25 mg 0.5 mg 0.75 mg 2.5 mg 5 mg 7.5 mg	Comparison to Class 1 Weights
Scales and Balances ^{1,6}	(3 to 5) kg (5 to 10) kg (10 to 20) kg (20 to 25) kg (25 to 30) kg	12 mg 25 mg 50 mg 62 mg 75 mg	Comparison to Class 1 Weights
Scales and Balances ^{1,6}	(0.5 to 1 000) lb	0.01 % of reading	Comparison to Class 6 Weights

Thermodynamic

Eau Claire, WI

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Temperature – Measure ¹	(-20 to 100) °C (100 to 425) °C (425 to 500) °C	0.058 °C 0.069 °C 0.086 °C	Comparison to Digital Temperature Gage
Humidity- Measure ¹	(10 to 90) %RH (90 to 98) %RH	1.1 %RH 2 %RH	Comparison to Humidity Indicator

Time and Frequency

Eau Claire, WI

			····· - ··· · · · · · · · · · · · · · ·
Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Frequency Reference ⁴	1 MHz	2.5 x 10 ⁻⁵ Hz	Comparison to 5522A Multi Product Calibrator

This Scope of Accreditation, version 018, was last updated on: 03 July 2025 and is valid only when accompanied by the Certificate.

Page 69 of 70

1899 L Street NW, Suite 1100-A, Washington, DC 20036 414-501-5494 www.anab.org

DIMENSIONAL MEASUREMENT

2 Dimensional

Dimensional			Euu chuire, w
Specific Tests and / or Properties Measured	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method and/or Equipment
Non-contact	(15.4 x 10.8) in	(1 <mark>26 + 1</mark> 2 <i>L</i>) μin	Comparison to Vision System

3 Dimensional

Eau Claire, WI

Eau Claire, WI

Specific Tests and / or Properties Measured	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method and/or Equipment
Dimensional Inspection Contact	(16 x 18 x 14) in	(209+ 1.2 <i>L</i>) μin	Comparison to Coordinate Measuring Machie

Return to Site listing (top)

Calibration and Measurement Capability (CMC) is expressed in terms of the measurement parameter, measurement range, expanded uncertainty of measurement and reference standard, method, and/or equipment. The expanded uncertainty of measurement is expressed as the standard uncertainty of the measurement multiplied by a coverage factor of 2 (k=2), corresponding to a confidence level of approximately 95%.

Notes:

- 1. On-site calibration service is available for this parameter, since on-site conditions are typically more variable than those in the laboratory, larger measurement uncertainties are expected on-site than what is reported on the accredited scope
- 2. The use of (R) signifies the Resolution of the unit under test, the use of (L) represents Length in inches, the use of (D) represents Diameter in inches.
- 3. Uncertainties listed for Electromagnetic DC/Low Frequency and RF/Microwave does not include possible contributions from a "best available" unit under test
- 4. Derivatives of 10MHz will have different uncertainties due to resolution, noise, and gating errors.
- 5. The tactile fit of an adjustable thread ring to a thread-setting plug is not a measurement of pitch diameter. The uncertainty for this pitch diameter setting is based on the contributors associated with the thread setting plug and environmental contributors only.
- 6. The CMC for scales and balances are highly dependent upon the resolution of the unit under test. The uncertainties presented here does not include the resolution of the unit under test. The resolution will be included in the reported measurement uncertainty at the time of calibration.

Jason Stine, Vice President

This Scope of Accreditation, version 018, was last updated on: 03 July 2025 and is valid only when accompanied by the Certificate.

Page 70 of 70

1899 L Street NW, Suite 1100-A, Washington, DC 20036 414-501-5494 <u>www.anab.org</u>

